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Abstract

Financial recessions are characterized by a large risk premium and slow re-

covery. However, macro-finance models have trouble matching these empirical

features. In this paper, I build a macro-finance model with stochastic productivity

and state-dependent exit of experts that quantitatively explains salient features of

a financial crisis. I calibrate my model to the executive turnover and efficiency

data in financial institutions and show that it resolves a tension between the am-

plification and persistence of a financial recession, and generates realistic crisis

dynamics. High exit at the onset of a crisis creates a net worth trap with long-

lasting economic consequences.
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1 Introduction

It is well known that recessions are marked by high equity risk premia, low invest-

ment rates, and low output. The great recession of 2007-2008 emphasized the impor-

tance that financial intermediaries play in propagating shocks to the real economy.

Since then, there has been a growing literature on the leverage of intermediaries as

a key factor in moving asset prices and the real economy.1 Recessions that feature a

sharp decrease (increase) in the investment rate and output (risk premium) also fea-

ture a sharp increase in the leverage of BHCs. While the intermediaries take a central

role in the recent macro-finance literature, the financial constraints that they face are

of particular importance (see, example, Brunnermeier and Sannikov (2014) (BS2014

henceforth), He and Krishnamurthy (2013), Di Tella (2017), etc.). In these models, the

financial constraints bind only at certain times which leads to non-linearity in the as-

set prices. In normal times, financial markets facilitate capital allocation to the most

productive agents. In such states, intermediaries are sufficiently capitalized and the

premium on the risky asset is low. In bad times, financial constraints bind and the cap-

ital gets misallocated to less productive agents, who do not value capital as much. This

leads to a deterioration of intermediary balance sheets and pushes the economy into

a crisis where the premium on the risky asset shoots up. These models explain a high

risk premium in the crisis periods but the contribution has largely been qualitative

except Maxted (2020) and Krishnamurthy and Li (2020).2

The contribution of this paper is two-fold. First, I build a heterogeneous agent

macro-finance model with households and experts in an incomplete market. Experts

capitalize intermediaries with their wealth in the form of inside equity, in addition to

the outside equity and debt raised from households. Experts, who manage interme-

diaries and have preferences over their consumption, face a stochastic productivity

1See, for example, Brunnermeier and Sannikov (2014), He and Krishnamurthy (2013), Di Tella (2017), Adrian,
Etula and Muir (2014), Phelan (2016), Moreira and Savov (2017), etc.

2Gertler, Kiyotaki and Prestipino (2020) incorporates bank run into a standard New Keynesian model that ex-
plains financial crisis quantitatively. However, they focus on matching a specific crisis episode- the great recession
of 2008.
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and a state-dependent exit that occasionally generates capital misallocation. I solve

the model using a novel deep learning-based numerical method that encodes the eco-

nomic information as regularizers.3 This methodology, as shown in the companion pa-

per Gopalakrishna (2021), is scalable and can be applied to similar high-dimensional

problems. The fluctuating productivity of experts is a source of dividend risk and is

a crucial driver of systemic instability. In addition, I introduce state-dependent exit of

experts as a parsimonious way of capturing management turnover in financial insti-

tutions. The executive compensation data shows that around 32% of the top financial

sector executives left their management role, as shown in Figure (1).4 In fact, 6 of the

10 largest US banks in terms of asset size had a CEO departure during the great reces-

sion. The average drop in book equity at the peak of the 2008 financial crisis among

the financial institutions that had at least one executive departure was 17%. Table (2)

further shows that the executive turnover rate shoots up when the wealth share of

financial institutions go down particularly during financial crisis. I capture this em-

pirical turnover through an expert exit rate that depends on the endogenous state of

the economy. That is, at the onset of a crisis, the rate at which the experts exit and take

their net worth (a function of their past earnings) out of the intermediaries that they

manage when a crisis hits is high. This depresses the aggregate net worth of the expert

sector and puts a larger fraction of capital into inefficient households. The result is a

drop in the capital price, a rise in the risk premium, and a drop in the investment rate,

all of which pull down the growth rate of economy. High exit at the onset of a crisis

acts as a trigger dampening the risk capacity of expert sector, and pushes the economy

into a downward spiral from which it is hard to recover even with a subsequent low

exit. I show that, beyond a threshold expert exit rate, the economy generates a net

worth trap where the wealth share of experts collapses to zero and the economy lives

in an inefficient regime permanently.

3Regularizer is a commonly used tool in machine learning to reduce overfitting. See Glorot and Bengio (2010)
for details.

4The turnover rate of 32% is a ‘net’ rate that takes into account the entry of executives in the same period. Data
is taken from ExecuComp database.
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The second contribution is the quantification of my model to dissect the mecha-

nisms of the financial crisis. To this end, I show that a simpler model with constant

productivity and no exit of experts, which reduces to Brunnermeier and Sannikov

(2016) (BS2016 henceforth), suffers from a tension between the amplification and the

persistence of financial crises. In particular, there is a trade-off between the conditional

risk premium and the duration of crisis.5 During bad times, the premium on the risky

asset shoots up due to capital misallocation and fire-sale. The leveraged experts earn

the higher conditional risk premium allowing them to rebuild sufficient wealth and

recover quickly from the crisis. Such a fast rebound is at odds with the data since

recessions are empirically long-lasting. Auxiliary features of the model that gener-

ate longer crises necessarily attenuate the conditional risk premium (i.e., amplification

gets dampened). This is because crises tend to be long when the experts recapitalize

slowly, which can only happen when the risk premium that the experts earn is low

in the model. To give a concrete example, when the simpler model is calibrated to

generate a realistic 18-month duration of the crisis, the model implied conditional risk

premium is 2%, which is much lower than the empirically observed premium of 25%.6

On the other hand, when the model is calibrated to generate a realistic conditional

risk premium of 25%, the model-implied average duration of crisis is 5 months, well

short of 18-month crisis duration observed in the data. While I take Brunnermeier

and Sannikov (2016) as a benchmark model, the documented tension is more general

to any macro-finance model where the wealth-share of intermediaries is the sole state

variable driving the economy, due to the mechanical relation between the high risk

premium and the expected growth rate of intermediaries wealth.

The model with stochastic productivity and state-dependent expert turnover re-

solves this tension and provides reasonable crisis dynamics along three key dimen-

5In this paper, conditional risk premium refers to the premium on the risky asset in the crisis state. Another
interesting trade-off that emerges from this simpler model is between the unconditional risk premium and the
probability of a crisis. This is explored in detail in Section 3.

6See Table (4) in Section 3 for the estimated conditional risk premium. The average contraction period from
the NBER website is around 18 months. Source: https://www.nber.org/cycles.html. This is a conservative
measure compared to around 3 years peak to trough period reported in Muir (2017) and 2.5 years to recovery in
Krishnamurthy and Li (2020).
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sions: a) crisis likelihood, which represents the occupation time of the economy in a

crisis state, b) amplification, that represents a large conditional risk premium and low

output, and c) persistence, that represents slow recovery from the crisis. When the

economy is in a stochastic steady state, all capital is held by the experts, and the risk

premium is low. A negative shock to the level of capital also decreases the produc-

tivity of experts, increasing the frequency of crisis since the experts are more likely

to fire-sell assets to the households and trigger the financial amplification channel.

The crisis state is characterized by a low output, depressed investment, and a large

risk premium. The model implies an 8% probability of a crisis, matching the empirical

value of 7% from Reinhart and Rogoff (2009). In a crisis state, the experts turnover rate

is high, reflecting large financial institutions executives departures during crises in the

data, reducing the proportion of agents who manage capital more productively. This

force has a dominating impact on the aggregate expert sector’s wealth compared to

the effect coming from increased risk premium and pushes the economy deeper into

crisis. The expert productivity eventually mean reverts, and the economy reaches a

point where the increased productivity dominates the exit effect, helping the economy

climb out of the crisis. The speed of mean reversion in productivity is low, forcing the

economy to spend a long amount of time in distress before the increase in productivity

ends the gloomy phase. The model implies a crisis duration of 20 months, close to the

empirical value of 18 months from the NBER recessionary cycle data. At normalcy, all

capital in the economy is held by experts again, and the financial amplification channel

is shut down, where the exit rate is small. Thus, the twin forces of stochastic produc-

tivity and exit match the empirical moments in all three categories, bringing the model

closer to data.

The model is solved using a deep learning-based numerical algorithm that takes

advantage of the universal approximation theorem by Hornik, Stinchcombe and White

(1989), which states that a neural network with one hidden layer can approximate any

Borel measurable function. This method is scalable since it alleviates the curse of di-

mensionality that plagues the finite-difference schemes in higher dimensions. The
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main difficulty that arises from grid-based solutions such as finite-difference schemes

is the combination of an explosion in the number of grid points and the need for a

reduced time step size as the dimensions grow large. My solution side-steps these lim-

itations since it is mesh-free.7 This algorithm dominates the finite-difference method

used in BS2016, Hansen, Khorrami and Tourre (2018), etc., since the presence of corre-

lated state variables makes it difficult to maintain the monotonicity of finite-difference

schemes which is required for convergence.8 The companion paper Gopalakrishna

(2021) discusses the algorithm in detail and applies it to similar problems with several

dimensions as high as five.

The simpler benchmark model with constant productivity and no exit is similar in

spirit to BS2016 but there is an overlapping generation of agents (OLG) with recursive

preference. The assumption of OLG offers a non-degenerate stationary distribution

of the state variable (Gârleanu and Panageas (2015)), while recursive preference helps

with obtaining realistic asset pricing moments.9 I quantify this benchmark model,

similar in spirit to He and Krishnamurthy (2019) (HK2019 henceforth) and Krishna-

murthy and Li (2020) but with notable differences. The model that I consider has both

the households and the experts consuming by solving an infinite horizon optimiza-

tion problem, whereas, in HK2019 the experts do not consume and solve a myopic

optimization problem. Both models feature non-linear asset prices arising due to oc-

casionally binding financial intermediary constraints. However, the transition from

the normal to the crisis state is smooth in HK2019. On the contrary, the model that I

consider, similar to BS2016, features an endogenous jump in the risk prices that reflects

the fact that periods prior to financial crises are typically calm with an exceedingly low

risk premium (Baron and Xiong (2017)) and rises dramatically once the crisis period

7I rely on Tensor-flow, a deep learning library developed by Google Brain, that computes the numerical deriva-
tives efficiently.

8See D’Avernas and Vandeweyer (2019) and Phelan and Eslami (2022) for issues of monotonicity in finite-
difference schemes. Appendix C.6.1 shows that the solution obtained from the deep learning algorithm matches
the finite-difference solution when applied to a simpler model with one state variable. I also demonstrate how one
can modify a few lines of code and jump from solving a low to a high-dimensional state space problem.

9The OLG assumption provides a non-degenerate distribution even when there is no discount rate heterogene-
ity.

6



begins. The endogenous jump in the model is caused by the fire-sale effect where the

experts sell capital to households that have a lower valuation of the capital due to

their lower productivity rate. The effect of fire sales on the asset markets is crucial in

times of distress, as is emphasized in Kiyotaki and Moore (1997), Shleifer and Vishny

(2011), and Kurlat (2018). Importantly, due to the endogenous jump, the point in the

state space at which the financial crisis occurs is well-defined. In models where the

transition is smooth, one has to rely on an exogenously defined threshold at which

the system enters the crisis region. Krishnamurthy and Li (2020) considers the model

with an endogenous jump similar to this paper but focuses on matching credit spreads

across several financial crisis episodes with an emphasis on the pre-crisis froth in credit

markets. While the agents in their model have log utility with the capital subjected to

Brownian and Poisson shocks, I consider a recursive utility function and Brownian

shocks. Due to the assumption of Brownian shocks, the exogenous shocks are small

in nature but still leads to a large endogenous risk, eventually leading to a crisis. This

resonates the 2008 financial crisis episode well. Also, the recursive utility has the ad-

vantage of separating the risk aversion from the IES (Bansal and Yaron (2004)) and

helps with obtaining better asset pricing moments. Maxted (2020) analyzes a quanti-

tative model of financial intermediation and sentiment, similar to Krishnamurthy and

Li (2020) where intermediaries do not consume and have mean-variance preferences

over their reputation.

Models of intermediary asset pricing highlight the persistence and the amplification

of shocks caused by the leveraged agents. A measure of persistence and amplification

is the duration of the crisis and conditional risk premium, respectively. The quan-

tification of the benchmark model reveals two key trade-offs. First, there is tension

between the unconditional risk premium and the probability of a crisis. A high level

of risk aversion is required to match the large observed unconditional risk premium.

When the experts earn a large premium in the stochastic steady state, small negative

shocks to the capital do not cause enough deterioration in their net worth to hit the

crisis boundary, thereby diminishing the probability of a crisis. Second, conditional
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on being in crisis, there is a tension between the risk premium and the duration of the

crisis. This is because risk premium spikes as soon as the economy enters a crisis state,

enabling the experts to gain wealth quickly and revert to the normal regime leading

to fast recovery. With larger values of risk aversion, the experts build wealth even

faster through a higher risk premium, resulting in a quicker reversion to the normal

state. The benchmark model has its strengths in capturing the non-linearity of the as-

set prices, the output growth, and the leverage patterns of intermediaries. The biggest

weaknesses are the inability to jointly generate a realistic duration of crisis and risk

premium, and sufficient variation in the risk prices.10 The richer model with stochas-

tic productivity and state-dependent exit rate of the experts generates reasonable asset

pricing and crisis moments. Embedding these two features that have empirical sup-

port brings the model closer to the data in important aspects.

Related Literature This paper relates to several strands of the literature. On the

modeling front, it is most closely related to BS2016 which introduces a continuous

time macro-finance model based on capital misallocation and fire sales. It fits within a

large body of intermediary based asset pricing models such as BS2014, He and Krish-

namurthy (2013), Di Tella (2017), Adrian and Boyarchenko (2012), Moreira and Savov

(2017), etc. While BS2014 assumes risk-neutral agents with an exogenous interest rate,

the agents in BS2016 are risk averse with CRRA utility function, and the risk-free rate

is endogenous. The capital misallocation in BS2016 occurs due to bad shocks and the

subsequent fire-sale effect. Moll (2014) analyses a model where the inability of the pro-

ductive agents to lever up due to collateral constraints causes capital misallocation.

The empirical evidence for intermediary-based asset pricing highlights the role that

the banks and the hedge funds play in pricing assets (He, Kelly and Manela (2017),

and Adrian, Etula and Muir (2014)). While these papers provide a theory based on

intermediary leverage as a motivation for empirical findings, the literature that tightly

tests the ability of general equilibrium asset pricing models with financial frictions

10Since the q-theory result tightly ties the investment rate to the capital price, a low model implied volatility of
price translates to a low variation in the investment rate too.
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to match the data is sparse. Two related papers that attempt to fill the gap are Muir

(2017), and HK2019. However, the experts in their model do not consume and solve

a myopic optimization problem, whereas, in my model both the households and the

experts consume a fraction of the total output by solving an infinite horizon optimiza-

tion problem. While HK2019 focus on matching the non-linearity of their model with

the data and consider an exogenously defined probability of a crisis, the goal of this

paper goes beyond matching just the non-linearity and deals with an endogenous cri-

sis boundary- a slightly more daunting task since there is one less degree of freedom.

In this regard, this paper comes closer to Krishnamurthy and Li (2020) which attempts

to match the pre-crisis froth in the credit market through a Bayesian learning model.

Muir (2017) analyses risk premia during downturns for a large panel of countries and

finds that financial crises are crucial in understanding the variation in risk premium.11.

This paper also relates to Khorrami (2016), who shows that the implied cost of en-

try to participate in the stock market is as large as 90% of the wealth of the agents.

While he focuses on a limited asset market participation model with costly entry, my

model features capital misallocation with stochastic productivity that is calibrated to

match both the amplification as well as the duration of crisis in the data. Bigio and

D’Avernas (2021) build a risk capacity-based model with information asymmetries to

explain slow recovery from the financial crisis. The state-dependent exit of experts

in this paper relates to Eisfeldt, Lustig and Zhang (2017) who introduce endogenous

entry and exit of participants in complex asset markets.12 Ikeda and Kurozumi (2019)

analyze a DSGE model with financial shocks to generate slow recovery from financial

crisis. However, they study deviations from a steady-state, whereas, my model allows

for studying the global dynamics.

Hansen, Khorrami and Tourre (2018) provide a framework that nests several mod-

els based on financial frictions. Their contribution is largely to provide qualitative

11Futhermore, he shows that an intermediary-based asset pricing model is shown to fare better compared to
the consumption-based representative agent models with long-run risk (Bansal and Yaron (2004)), habit (Campbell
and Cochrane (1999)), and rare disaster (Barro (2006)) features

12In Eisfeldt, Lustig and Zhang (2017), the decision to enter and exit is endogenous and hence the agents solve
an optimal stopping time problem. In this paper, the exit rate is assumed to be state-dependent.
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insights by comparing different nested models, whereas, this paper is guided by quan-

titative analysis and conducts extensive simulations to test the model performance in

matching both unconditional and conditional macroeconomic and asset pricing mo-

ments. My model assumes that the productivity of experts fluctuates with the busi-

ness cycle, which holds empirical relevance (Hughes, Mester and Moon (2001), Feng

and Serletis (2010)). Dindo, Modena and Pelizzon (2022) shows that the average in-

termediation cost for financial institutions in the US is counter-cyclical, and builds a

general equilibrium model associating the cost with the business cycle. I consider a

parsimonious way to capture management turnover in financial institutions through

an exogenous exit rate of experts which complements a large literature on CEOs and

management departures (Weisbach (1988), Schwartz-Ziv and Weisbach (2013), Jenter

and Kanaan (2015), Sarkar, Subramanian and Tantri (2019), Denis, Denis and Sarin

(1997), Eisfeldt and Papanikolaou (2013), etc.).

Lastly, this paper also relates to the literature on global solution methods for het-

erogeneous agent models using continuous time machinery (see Achdou et al. (2014)

for an overview). With the advancements in machine learning, recent papers have

turned to neural networks to solve equilibrium models.13 The algorithm proposed

in this paper is similar in spirit but also incorporates prior information from the cri-

sis boundary as regularizers and is particularly geared toward solving heterogeneous

agent incomplete market problems. To the best of my knowledge, this is the first paper

to apply a deep learning-based algorithm to solve such type of a model.

The paper is organized as follows. Section 2 introduces the model. Section 3

presents the benchmark model and quantifies it to shed light on the tension between

the amplification and the persistence of crises. Section 4 shows that the model with

stochastic productivity and exit rate of experts resolves the tension and brings the

model closer to the data. Section 5 concludes. The proofs and details on numerical

13See Duarte (2017), Fernández-Villaverde, Hurtado and Nuno (2020), etc. There is a substantial literature
on the deep-learning techniques to solve PDEs in Applied Mathematics, which I cover in the companion paper
Gopalakrishna (2021). For the application of deep learning techniques to solve discrete-time DSGE models, see
Azinovic, Gaegauf and Scheidegger (2019).
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methodology can be found in Appendix �.

2 Model

In this section, I present a heterogeneous agent model with stochastic productivity

and state-dependent exit rate of experts. There is an infinite horizon economy with

a continuum of agents, who are of two types: households and experts. Let H and

E denote the set of households and experts, respectively. The aggregate capital in

the economy is denoted by  C , where C ∈ [0,∞) denotes time. Within each group,

the agents are identical and hence we can index the representative household and

the expert by ℎ ∈ H and 4 ∈ E respectively.14 The experts capitalize intermediaries

with their net worth as inside equity. Through intermediaries, they can issue risk-free

debt, and obtain a higher return to holding capital as they are more productive than

households. Going forward, I assume that experts and intermediaries are identical

and use them interchangeably, W.L.O.G. The friction is such that the experts have to

retain at least some amount of equity on their balance sheet. In the absence of this

friction, the experts should hold all capital as they are more productive users. Also,

the agents are precluded from shorting the risky capital. The production technology

can be written as

H 9,C = 0 9,C : 9,C 9 ∈ {4, ℎ} (1)

where the capital evolves as15

3: 9,C

: 9,C
= (Φ(� 9,C) − �)3C + �3/:C (2)

with � 9,C as the investment rate, and {/C ∈ R;ℱC ,Ω} is the standard Brownian motions

representing the aggregate uncertainty in (Ω,P,ℱ ). The parameter � denotes the ex-

ogenous volatility of the capital process. The investment function Φ(·) is concave and

14This is due to the homogeneity of preferences. The mass of households and experts is time-varying due to
demographic changes and exit. Preferences and assumptions related to exit are explained later.

15Note that : 9,C is the capital held by agent 9.
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captures the decreasing returns to scale, and � is the depreciation rate of capital. As

in BS2016, Φ(·) captures the technological illiquidity. The depreciation rate is the same

for both households and experts. I assume that the investment cost function takes the

logarithmic form16 Φ(�) = log(��+1)
� where � is the adjustment cost parameter that con-

trols the elasticity of the investment technology. I assume that the productivity of the

experts is governed by the following stochastic differential equation

304,C = �(0̂4 − 04,C)3C + � (04 − 04,C)(04,C − 04)︸                  ︷︷                  ︸
�04,C

3/0C (3)

where the Brownian shock 3/0C has a correlation !3C with the Brownian shock 3/:C

with ! > 0. That is, the expert productivity follows an Ornstein–Uhlenbeck process

with stochastic volatility such that it moves between a lower level 04 and an upper

level 0̄4 with a persistence parameter � and mean 0̂4 ∈ (04 , 0̄4). Since 0ℎ < 04 < 0̄4 , the

productivity of the experts is always higher than that of the households even though

it fluctuates between 04 and 0̄4 .17 The capital price @C follows

3@C

@C
= �

@

C 3C + �
@,:
C 3/:C + �

@,0
C 3/0C

The return process for each type of agent is given by 3' 9,C =
3(@C : 9,C)
@C : 9,C

+ (0 9,C−� 9,C): 9,C@C : 9,C
3C where

the first component of the R.H.S is capital gain, and the second component is the div-

idend yield. Note that the dividends are agent-specific due to different productivity

rates, and possibly due to different investment rates.18 The time-varying productivity

04,C is a source of dividend risk for the experts, and therefore /0C acts as a Financial

16This is a valid investment cost function since Φ(0) = 0, Φ′ > 0, and Φ′′ ≤ 0.
17I denote (0 9,C ; 9 ∈ {4, ℎ}) to have concise notation but it is to be understood that 0ℎ,C is just a constant 0ℎ ,

whereas 04,C follows equation (3).
18It turns out that the optimal investment rate is the same for both types of agent since it depends on the capital

price and the adjustment cost parameter �. For now, I assume that the investment rate is agent-specific and show
later in (11) that it is the same for all agents.
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shock in addition to the capital shock. Applying Ito’s lemma, we get

3' 9,C =

(
�
@

C +Φ(� 9,C) − � + ��
@,:
C + !��

@,0
C +

0 9,C − � 9,C
@C︸                                                   ︷︷                                                   ︸

�'
9,C

)
3C + (�@,:

C + �)3/
:
C + �

@,0
C 3/0C (4)

The aggregate output in the economy is given by HC = �C C , where  C =
∫

E∪H
: 9,C39,

and �C is the aggregate dividend that satisfies

�C =

∫
E∪H

0 9,C
: 9,C

 C
39

Let the capital share held by the expert sector be denoted by

#C :=

∫
E
: 9,C39∫

E∪H
: 9,C39

The experts and the households trade capital and the experts face a skin-in-the-game

constraint that forces them to retain at least a fraction " ∈ [0,1] of the equity on their

balance sheet. The agents can also trade in the risk-free security that pays a return AC

that is determined in the equilibrium. The stochastic discount factor (SDF) process for

each type of agent is given by

3�9,C

�9,C
= −AC3C − �:9,C3/:C − �09,C3/0C (5)

where �:
9,C and �0

9,C are the prices of risk for the shocks 3/:C and 3/0C respectively.

Preferences and equilibrium I assume that the agents have recursive utility with

IES=1. That is, the utility is given by

* 9,C = �C

[∫ ∞

C

5 (2 9,B ,* 9,B)3B
]
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with

5 (2 9,C ,* 9,C) = (1− �)�* 9,C

(
log(2 9,C) −

1
1− � log

(
(1− �)* 9,C

))
(6)

where � and � are the risk aversion and the discount rate coefficients respectively.

Following Gârleanu and Panageas (2015), I assume that some agents are born and die

at each time instant with a probability �3. Let Ī and 1 − Ī denote the proportion of

experts and households that are born each instant respectively. The death risk is not

measurable under the filtration generated by the Brownian process ℱC and the agents

do not have bequest motives. Hence, once the agents die, the wealth is pooled and

distributed on a pro-rata basis. As a result of the death risk, the rate of time prefer-

ence parameter � can be thought of as inclusive of the death rate �3. I abstract away

from the insurance market to hedge the death risk, similar to Hansen, Khorrami and

Tourre (2018) for simplicity. I assume that at each time instant 3C, a fraction �C3C of

experts become households, where �C is state-dependent. This transition will be taken

into consideration in the optimization problem of the agents.19 This assumption is a

parsimonious way to capture management turnover in financial institutions, which

are particularly high during financial crises, as seen in Figure (1). I assume that house-

holds do not have exit, and hence the inflow into the set E is only through birth,

whereas, the inflow into the set H is due to both birth and migration of experts. Note

that the mass of households and experts is time-varying as a result. The experts opti-

mize by maximizing their utility functions, subject to wealth constraints, starting from

some initial wealth F4,0.20 Let �′ denote the time at which the experts exit and become

19Gomez (2019) uses a similar assumption that applies to the leveraged wealthy households, and in Di Tella
(2017), a similar exit rate is applied to the intermediaries to generate a non-degenerate stationary distribution.
However, they do not model the exit rate as state-dependent. The functional form of �C is provided later in (20),
after constructing of the state space.

20Note that since all agents within the same group are identical, the wealth equation is presented for the aggre-
gated agents. For wealth dynamics of individual agent within the group, see Appendix B.1.1.
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households, that is exponentially distributed with the rate �C . They solve

*4,C = sup
24,C ,:4,C ,"4,C

�C

[∫ �′

C

5 (24,B ,*4,B)3B +*ℎ,�′

]
(7)

s.t.
3F4,C

F4,C
=

(
AC −

24,C

F4,C
+
@C :4,C

F4,C
(�'4,C − AC − (1− "4,C)&ℎ,C)

)
3C

+ �F4 ,C
(
(� + �@,:

C )3/
:
C + �

@,0
C 3/0C

)
where @C :4,C

F4,C
and "4,C denote the fraction of wealth invested in capital, and the experts’

inside equity share, respectively. The experts obtain a continuation utility of *ℎ,�′

starting from the time of transition into households. While the experts obtain an ex-

pected excess return of �'4,C − AC by investing in the risky asset, they have to pay the

outside equity investors (1− "4,C)&ℎ,C , where &ℎ,C is the premium demanded by house-

holds defined in equation (10). Thus, the latter component is netted out from the total

expected return on capital investment. The skin-in-the game constraint implies that

experts choose the inside equity share "4,C ∈ [",1]. On the other hand, households do

not issue outside equity implying that "ℎ,C = 1 always. I write "4,C simply as "C for

notational convenience henceforth. The households solve

*ℎ,C = sup
2ℎ,C ,:ℎ,C

�C

[∫ ∞

C

5 (2ℎ,B ,*ℎ,B)3B
]

(8)

s.t.
3Fℎ,C

Fℎ,C
=

(
AC −

2ℎ,C

Fℎ,C
+
@C :ℎ,C

Fℎ,C
(�'

ℎ,C − AC)
)
3C + �Fℎ ,C

(
(� + �@,:

C )3/
:
C + �

@,0
C 3/0C

)
The households face a no-shorting constraint :ℎ,C ≥ 0. I define

&4,C := �:4,C(� + �
@,:
C ) + �

0
4,C�

@,0
C + !(�

0
4,C(� + �

@,:
C ) + �

:
4,C�

@,0
C ) (9)

&ℎ,C := �:
ℎ,C(� + �

@,:
C ) + �

0
ℎ,C�

@,0
C + !(�

0
ℎ,C(� + �

@,:
C ) + �

:
ℎ,C�

@,0
C ) (10)

There are two prices of risk for each type of the agent: �:
9,C and �0

9,C , corresponding

to the capital shock and the productivity shock, respectively. That is, by borrowing

in the risk free market at a rate AC and investing in the risky capital, they obtain the
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prices of risk �:
9,C and �0

9,C . The exit rate of experts does not enter into the individual

wealth equation, but it appears in the evolution of aggregated expert wealth as shown

in Appendix B.1.1. In fact, there are an infinite number of agents in the economy, but

each individual in types E and H is identical, hence they have the same preferences.

Therefore, one can seek an equilibrium in which all agents in the same group take the

same policy decisions. For completeness, I present the full version of the equilibrium

first.

Definition 2.1. A competitive equilibrium is a set of aggregate stochastic processes

adapted to the filtration generated by the Brownian motions /:C and /0C . Given an

initial distribution of wealth between the experts and households, the processes are

prices (@C , AC), policy functions (2 9,C , � 9,C ,#C ; 9 ∈ {4, ℎ}) and net worth (F 9,C ; 9 ∈ {4, ℎ}), such

that

• Capital market clears:
∫

H
(1−#C) C39 +

∫
E
#C C39 =

∫
H∪E

: 9,C39 ∀C

• Goods market clear:
∫

H∪E
2 9,C39 =

∫
H∪E
(0 9,C − � 9,C): 9,C39 ∀C

•
∫

H∪E
F 9,C39 =

∫
H∪E

@C : 9,C39 ∀C

Asset pricing conditions The agents choose the optimal rate of investment by max-

imizing their return on holding capital. That is, � 9,C solves21

max
� 9,C

Φ(� 9,C) −
� 9,C

@C

The optimal investment rate is obtained as

�∗9,C =
@C − 1
�

(11)

The investment rate is the same for both types of agents since it depends only on @C .

This is a standard ‘q-theory’ result, which implies a tight relation between the price of

21Note that the only component in the expected return that contains investment rate is Φ(� 9,C ) −
� 9,C
@C

.
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capital and the investment rate. Thus, the growth rate of the economy is endogenously

determined by the investment rate through the capital price. A higher price increases

investment and causes output growth to accelerate (since Φ′(·) > 0). The asset pricing

relationship for experts is given by22

04,C − �C
@C

+Φ(�C) − � + �@C + ��
@,:
C + !��

@,0
C − AC = "C&4,C + (1− "C)&ℎ,C (12)

where & 9,C is defined in (9) and (10). The experts will issue the maximum allowed

equity ("C = ") if the premium demanded by them is higher than that required by

households. The pricing condition of households is given by

0ℎ − �C
@C
+Φ(�C) − � + �@C + ��

@,:
C + !��

@,0
C − AC ≤ &ℎ,C (13)

where the equality holds if #C < 1. We can combine (12) and (13) and write the asset

pricing condition as

04,C − 0ℎ
@C

≥ "C(&4,C − &ℎ,C) (14)

min{"C − ", &4,C − &ℎ,C} = 0 (15)

Equation (14) holds with equality if #C < 1. Equation (15) states that whenever the

risk premium of experts is larger than that of households, experts issue the maxi-

mum outside equity (i.e., "C = "). When experts are wealthy enough such that the

constraint is no longer binding, the risk premium becomes equal. I solve for the de-

centralized Markov equilibrium by summarizing the system in terms of two state vari-

ables: wealth share of the experts denoted by IC , and the productivity of the experts

04,C .23 The equilibrium conditions map the optimal consumption, investment, capital

share, and the capital price to the history of Brownian shocks /:C and /0C through state

22This can be shown using a Martingale argument. See Appendix C.1 for the proof.
23All relevant objects scale with the capital  C and hence we can summarize the economy in just two state

variables.
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variables (IC , 04,C)which has a domain denoted by Ω. The wealth share is defined as

IC =
,4,C

@C C
∈ (0,1)

where ,4,C =
∫

E
F 9,C39. Moving forward, I write -ℎ,C and -4,C to denote the aggregated

quantities
∫

H
G 9,C39 and

∫
E
G 9,C39 respectively and characterize the model with a repre-

sentative household and expert.24

Proposition 1. The law of motion of the wealth share of experts is given by

3IC

IC
= �IC 3C + �

I,:
C 3/:C + �

I,0
C 3/0C (16)

where

�IC =
04,C − �C
@C

− �4,C
,4,C
+

(
"C#C
IC
− 1

) (
(� + �@,:

C )(�̂
1
4,C − (� + �

@,:
C )) + �

@,0
C (�̂

2
4,C − �

@,0
C ) − 2!(� + �@,:

C )�
@,0
C

)
+ (1− "C)

(
(� + �@,:

C )(�̂
1
4,C − �̂1

ℎ,C) + �
@,0
C (�̂

2
4,C − �̂2

ℎ,C)
)
+ �3
IC
(Ī − IC) − �(04,C , IC)

ˆ�1
9,C = �:9,C + !�09,C ; 9 ∈ {4, ℎ}
ˆ�2
9,C = �09,C + !�:9,C ; 9 ∈ {4, ℎ}

�I,:
C =

(
"C#C
IC
− 1

)
(� + �@,:

C )

�I,0
C =

(
"C#C
IC
− 1

)
�
@,0
C

Proof: See Appendix B.1.1.

The parameters �3 and Ī denote the death rate and the mean proportion of experts

in the economy at each time instant, respectively. The exit rate �C , whose functional

form is given in the equation (20), enters the drift of the wealth share.

24That is, since each agent within their respective group are identical, solving for the aggregate agent policies
are enough.
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2.1 Model solution

The solution method is similar to value function iteration, with an inner static loop

used to solve the equilibrium quantities ("C ,#C , @C ,�@,:
C ,�@,0

C ) using a Newton-Raphson

method, and an outer static loop to solve the value functions using a deep neural

network architecture. The first step solves for equilibrium policies from the value

function, which is set to take an arbitrary value at time T. This is analogous to ‘policy

improvement’ in the reinforcement learning literature. In the second step, the neural

network solves for the value function at time ) −ΔC, taking policies computed in first

step as given, which is then used to update policies in the subsequent step. This corre-

sponds to the ‘policy evaluation’ in the language of reinforcement learning.25 The two-

step procedure is performed repeatedly until the value function converges. I present

and discuss the equilibrium policies, and relegate the methodological details to Ap-

pendix C.2.

Static decisions and HJB equations: The value function is given by * 9,C and the HJB

for optimization problem (7) can be written as

sup
� 9,C , 9,C

5 (� 9,C ,* 9,C) + �[3* 9,C] = 0 (17)

Homothetic preferences imply that the value function is of the form

* 9,C =
(�9,C(IC , 04,C) C)1−�

1− �

with the process for the stochastic opportunity set defined as

3�9,C

�9,C
= ��

9,C3C + �
�,:
9,C 3/

:
C + �

�,0
9,C 3/

0
C (18)

25While there are similarities between the value function iteration and reinforcement learning, the state space in
my model is known ahead. A large part of the reinforcement learning deals with exploring new state space which
is not relevant for the setup considered in this paper.
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The aggregate wealth dynamics of experts is given by

3,4,C

,4,C
=

(
AC −

�4,C

,4,C
+
@C C

,4,C
&4,C −�3 +

Ī�3
IC
− �(IC , 04,C)

)
3C

+ "4,C
@C C

,4,C
(� + �@,:

C )3/
:
C + "4,C

@C C

,4,C
�
@,0
C 3/0C (19)

The terms involving �3 are due to the birth and death, and �(IC , 04,C) is the state depen-

dent exit rate. I assume the following function for the exit rate.

�C = �=1Ω= (IC , 04,C) + �21Ω2 (IC , 04,C) (20)

where Ω2 = {(IC , 04,C)|IC ≤ I∗(04), 04 < 0̂} is the endogenous region in state space at

which the capital gets misallocated, productivity is below its mean, and the economy

is in crisis. That is, I∗(04) denotes the crisis boundary at which experts find it optimal

to fire-sell the capital to households, triggering the financial amplification mechanism.

The region Ω= = {(IC , 04,C)|IC > I∗(04)} corresponds to the normal regime with high

output and low risk premium. The parameters (�2 , �=) are calibrated to the observed

executive turnover rates in financial institutions. The HJB equation is written as26

�
[
log

� 9,C

,9,C
− log�9,C + log(@CI 9,C)

]
+

(
Φ(�) − �

)
−
�

2
�2 + ��

9,C −
�

2
(
(��,:

9,C )
2 + (��,0

9,C )
2 + 2!��,:

9,C �
�,0
9,C

)
+ (1− �)(���,:

9,C + !��
�,0
9,C ) + 19∈E

�C
1− �

((
�9′,C

�9,C

)1−�
− 1

)
= 0 (21)

where the last term on the left hand side is due to the exit.27

26The value function is conjectured to be a function of aggregate capital  C , instead of the wealth using the

relation IC =
,4,C
@C C

. Hence, the capital share does not enter the HJB equation directly. See Appendix B.1.2 for further
details.

27The index 9′ refers to the other type of agent. That is, for the case of experts, 9′ refers to households. Note that
I 9,C equals IC in the case of experts and 1− IC in the case of households.
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Proposition 2. The optimal consumption policy, and prices of risk are given by

�̂ 9,C = � (22)

�:4,C = −(1− �)�
�,:
4,C + �

I,:
C + �

@,:
C + �� (23)

�04,C = −(1− �)�
�,0
4,C + �

I,0
C + �

@,0
C (24)

�:
ℎ,C = −(1− �)�

�,:
ℎ,C −

IC

1− IC
�I,:
C + �

@,:
C + �� (25)

�0
ℎ,C = −(1− �)�

�,0
ℎ,C −

IC

1− IC
�I,0
C + �

@,0
C (26)

Proof: See Appendix B.1.2.

The consumption-wealth ratio �̂ 9,C is constant and is equal to the discount rate

because IES=1. The optimal policies are given in terms of the other equilibrium quan-

tities (�9,C ,"C ,#C , @C ,�
@,:
C ,�@,0

C ) which are found by solving for a Markov equilibrium in

the state space Ω := zt ∈ (0,1) × ae,t ∈ (ae,ae).

Definition 2.2. A Markov equilibrium inΩ is a set of adapted processes @(IC , 04,C), A(IC , 04,C),
�4(IC , 04,C), �ℎ(IC , 04,C), policy functions �̂4(IC , 04,C), �̂ℎ(IC , 04,C), #(IC , 04,C),"C(IC , 04,C), �C(IC , 04,C),
and state variables {IC , 04,C} such that

• �9,C solves the HJB equation and the corresponding policy functions

• Markets clear

(�̂4,CIC + �̂ℎ,C(1− IC))@C = #C(04,C − �C) + (1−#C)(0ℎ − �C) (27)

@C 4,C

,4,C
IC+

@C ℎ,C

,ℎ,C
(1− IC) = 1 (28)

• IC and 04,C satisfy (16) and (3) respectively

Similar to BS2016, there are three regions in the state space that describe the mecha-

nisms of risk-sharing, except that the state space is two-dimensional. In the first region

(Ω2), where IC is low, the risk premium of experts is high enough such that condition
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(14) holds with equality. In this region, the experts issue maximum allowed equity

1− " to households since their risk premium is high. In the second region, the experts

hold all capital in the economy. This corresponds to the case when # = 1 but the risk

premium of experts is still larger than that of households. As a result, they issue the

maximum allowed equity (i.e., "C = "). In the third reigon, experts still hold all the

capital (i.e., # = 1) as before, but they now issue outside equity such that &4,C = &ℎ,C .

This is the region where experts are wealthy enough such that the skin-in-the game

constraint is no longer binding, and the risk premium of experts and households are

equal. The second and third region together form Ω= .

Proposition 3. The total return variance is given by

| |�'C | |2 := (� + �@,:
C )

2 + (�@,0
C )

2 =
�2 +

( �2
04,C
@C

%@C
%04,C

)2(
1− 1

@C

%@C
%IC
IC

(#C"C
IC
− 1

) )2 (29)

Proof. See Appendix �.1.3.

The first term in the numerator on the R.H.S of equation (29) reflects the fundamen-

tal volatility while the second term captures the contribution of productivity shocks.

There are two effects that drive the total volatility: (a) Since %@C
%IC

> 0, and #C"C
IC
≥ 1 in

equilibrium28 in the crisis region, the denominator contributes towards a higher re-

turn volatility than the fundamental volatility � (b) Since %@C
%04,C

> 0, the second part in

the numerator adds to the amplification caused by (a). The equations (27), (29), and

(14) are used to solve for (@C ,�
@,:
C ,�@,0

C ,"C ,#C). The remaining equilibrium objects can

be obtained from these quantities. Appendix C.2 explains the solution steps in detail.

To understand the interaction of exit rate and productivity, I analyze the stationary

distribution in the limit when the wealth share of experts goes to zero. I analyze a

simpler model with constant productivity and exit rate that allows characterizing the

density in closed-form.

28The quantity #C"C
IC

is the experts exposure to the investment in risky capital. This quantity is larger than 1
whenever the expected return of experts is greater than that of households, which is the case in crisis region.
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Lemma 2.1. The asymptotic solution for the stationary density is given by

5 (I) ∼
(

2�I(0)
(�I)2(0) − 1

)
I

2�I (0)
(�I )2(0)−2

(30)

where the ratio �̃0 := 2�I(0)
(�I)2(0) determines the existence of a non-degenerate density.

Proof. See Appendix B.1.4.

The density 5 (I) is

1. degenerate when the ratio �̃0 is smaller than 1

2. non-degenerate but has infinite mass at I = 0 whenever the ratio �̃0 is between

the values 1 and 2.

3. non-degenerate with finite mass everywhere when �̃0 is larger than 2

When �̃0 is smaller than 2 (cases 1 and 2), the economy is trapped at the point I = 0,

implying that the households hold all capital inefficiently over the long run.

Proposition 4. There exists a threshold level 0∗4(�C) below which a drop in expert productivity

leads to a net worth trap where the economy inefficiently lives forever.

Proof: See Appendix B.1.4.

Figure (5) displays the quantity �̃0 as a function of productivity 04 for two levels of

exit rate. We can see that the threshold level 0∗4(�C) below which the economy enters

a net worth trap is increasing with the exit rate. Intuitively, when there is a larger

turnover of experts, their productivity needs to be large enough to avoid a net worth

trap. The intuition from this simpler model carries over to the richer model where

both productivity and exit rate are time-varying. After a series of negative shocks,

the economy enters a crisis with a larger turnover and low expert productivity. These

two forces pushes the economy towards I = 0. The productivity eventually becomes

large enough to offset the high turnover, pulling the economy out of the crisis. If

productivity were to remain low perennially, the economy will be trapped at IC = 0,

with households taking over the economy.
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2.2 Calibration

The calibration strategy follows the standard procedure in the literature where each

model parameter is identified with a moment. The calibration is done in such a way

that the duration and probability of crisis is not explicitly targeted. Hence, a good test

of the model is whether it matches these two moments, particularly the duration, in

the data. Table (1) presents the list of parameters with the targeted moments.

RBC parameters: The investment cost parameter is calibrated to generate an investment-

capital ratio of 14%. The depreciation rate is chosen to match the average investment

rate.29 The conditional risk premium in the model is determined by the productivity

gap between households and experts. I choose the gap between expert productivity

04 and 0ℎ to target the conditional risk premium. The correlation of shocks to the level

of capital and expert productivity is chosen to be 0.5. This is guided by a -0.48 empiri-

cal correlation between the financial sector efficiency ratio and log GDP in the period

from 1996Q1 to 2020Q4.30

Preference parameters: The discount rate is taken to be 2% from the literature (closer

to the 4% used in Gertler and Kiyotaki (2010) and Krishnamurthy and Li (2020)). The

risk aversion parameter � is chosen to be 7 from the literature, not far off from the

value of 10 chosen by Gârleanu and Panageas (2015) for risk tolerant agents. The

death rate is chosen to be 3%, meaning that experts live on average for 37 years.

Gârleanu and Panageas (2015), and Hansen, Khorrami and Tourre (2018) use a value

of 2% which is comparable to the value of 3% used in this paper. The fraction of new

born agents designated as experts is calibrated to 0.05, comparable to the value of 0.1

in Hansen, Khorrami and Tourre (2018).

Productivity parameters: The parameter � governs the persistence of productivity

and is chosen such that the mean model implied productivity during crisis matches

29The average investment rate in the data is around 14%, with a volatility of 4.7% between the year 1975 to 2015
(He and Krishnamurthy (2019)).

30The financial sector efficiency efficiency ratio is measured as the asset-weighted average of non-operating cost
to income ratio for financial institutions in the US. The data is at quarterly frequency from 1984Q1 till 2020Q4. A
higher ratio indicates lower efficiency.
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the data. Specifically, the average conditional cost efficiency (inverse of cost to income

ratio) in the data is around 15th percentile of its value. The parameter � is chosen to

target the simulated conditional productivity to be around 15th percentile of its value

on average. The volatility parameter � is calibrated such that the variance of the sim-

ulated productivity process is approximately equal to the empirical financial sector

efficiency variance of 7%. The upper level of productivity 0̄4 targets an unconditional

risk premium of 5%. A larger productivity around stochastic steady state implies a

higher risk premium implied by the model, but too large a value can reduce the prob-

ability of crisis. I find the value of 0.2 to be a good balance between the unconditional

risk premium and the crisis frequency.

Other parameters: Expert exit rates are parameterized by �= and �2 ; these are impor-

tant in governing the transition into and out of crisis. The baseline rate �= is set to

2%, and I calibrate a 29% �2 (annually) to reflect the net turnover rate of management

level executives in the US financial sector. The large empirical turnover rate in the US

is comparable to the international evidence by Erkens, Hung and Matos (2012) who

documents a 29% turnover rate of the key executives and directors of financial firms

globally. While the empirical turnover rate went up to 32% during the peak of global

recession among US financial institutions, it went down to around 10% five quarters

later with a steady decline over time. To take into account this gradual reduction and

avoid having a large exit rate throughout the crisis period, I assume a productivity

dependent exit rate during crises. That is, �C = �=Ω= + �2Ω2 , where the endogenous

region Ω2 = {(IC , 04,C)|IC < I∗(04), 04 < 0̂} denotes a crisis state with below mean pro-

ductivity. Table (2) presents qualitative empirical evidence that the turnover rate is

indeed negative related to the productivity. Lastly, I assume that the experts cannot

issue outside equity (i.e., " = 1) as in Brunnermeier and Sannikov (2014). This assump-

tion helps in mapping the entire net worth of the experts to their inside equity.31

Figure (2) presents the equilibrium quantities obtained from the numerical solu-

tion. The productivity level has a large effect on the capital price. A lower level

31Relaxing this assumption to allow outside equity does not materially change the results.
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of expert productivity implies a lower capital price throughout the state space. The

presence of productivity shocks allows the return volatility to be higher than the fun-

damental volatility even in the normal regime. When the wealth share of more pro-

ductive experts is higher, capital is fully held by them. They always operate with

leverage in equilibrium and, therefore, when a negative shock hits the capital, their

net worth decreases disproportionately more than that of the households, resulting

in a deterioration of their wealth share. When it falls below a threshold {I∗(04)}, the

system endogenously enters into the crisis region featuring depressed asset prices,

and higher asset volatility. The jump in prices occurs due to the fire sales. In the cri-

sis zone, experts begin selling capital to households, who always place a lower value

on it. Hence, the capital price has to fall enough for households to purchase it and

clear the market. The fall in capital price is an inefficiency caused by the failure to

internalize the pecuniary externality by the agents. This is because each individual

in the economy takes prices as given in their respective decision-making process. To

be more concrete, whenever experts choose not to hold capital, they fail to take into

account the fact that households will be forced to hold it by market clearing. Since

households value capital less, they will demand a higher premium resulting in a fall

in the capital price. This feeds-back into the experts’ balance sheet since they are lever-

aged and causes further inefficiency and misallocation of resources. There is a second

externality that the individual agents within the expert group do not take into consid-

eration, which is the increased exit rate when the system enters the crisis region.32 The

pricing dynamics is different from the heterogeneous risk aversion literature in com-

plete markets (see Gârleanu and Panageas (2015), for example). With homogeneous

productivity and heterogeneous risk aversion, experts will sell capital to household

during periods of distress, who will demand a higher premium (and lower price) due

to their higher risk aversion. Although both models feature a drop in prices during the

crisis, the latter will be gradual.

The jump in prices due to the fire-sale effect can only be explained by the differ-

32The aggregate experts’ wealth is, however, affected by the exit, which can be seen in equation (19).
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ences in productivity rates in an incomplete market setting and no-shorting constraint.

There will be a state space where experts hold all the capital since the risk premium of

households is lower than that of experts. In such states, households would desire to

hold a negative quantity of capital, but since shorting is disallowed, they will hold no

capital at all. In contrast, if the productivity of households is the same as experts, they

will face the same risk premium as experts. Therefore, even if their risk aversion were

smaller, they would still desire to hold some positive quantity of capital. This smooths

the transition from the normal to the crisis regime.33

3 Quantitative analysis

In this section, I consider a simpler model without stochastic productivity and exit

rate of the experts that will serve as a benchmark model for the quantitative analysis.

Through simulation studies, I show that there is a trade-off between the amplification

and the persistence of financial crises in this simpler model. While there are many

channels that generate this tension, I focus on the risk aversion channel.34

3.1 Benchmark model

I assume that the productivity rate of both experts and households is constant such

that 04 > 0ℎ holds, and the exit rate is zero. With these two simplifications, the model

reduces to BS2016 augmented with recursive preference and OLG elements. While

the agents have CRRA utility function in BS2016, I assume that they have recursive

preference so as to disentangle the risk aversion and the inter-temporal elasticity of

substitution. The rest of the assumptions carry over from the stochastic productivity

model in Section 2. That is, the output is given by AK technology as in (1), with 04

and 0ℎ as the productivity rates of the experts and the households respectively. The

33This dynamics is present in Gârleanu and Panageas (2015). Hansen, Khorrami and Tourre (2018) offer addi-
tional insights for the case of heterogeneous productivity vs heterogeneous risk aversion.

34See Appendix C.5.7 for details on the skin-in-the-game constraint generating a similar trade-off.

27



evolution of capital is governed by (2) as before. Appendix C.4 presents the model in

detail along with the numerical procedure and the solution.

Comparative statics: Figure (3) depicts the risk premium of experts in the bench-

mark model, as well as the stationary density of expert wealth share.35 The static

comparison from the left-hand side figure in (3) shows that as the risk aversion in-

creases, so does the premium on the risky capital for experts. The other equilibrium

objects, such as capital price, return volatility, capital share of experts, drift of wealth

share, and volatility of wealth share are shown in Figure (10) in Appendix C.4. The

endogenous risk is higher in the crisis region when the risk aversion is lower, but it

features a smaller crisis region. Also, changes in the market price of risk induced by

varying risk aversion lead to vast differences in the drift of wealth share. This has an

impact on how the system transitions into and out of the crisis region.

Stationary distribution: While the left panel in Figure (3) gives us a qualitative de-

scription of the economy, the stationary distribution of the wealth share is required to

confront the model with the data. The stationary distribution represents the average

location of the state variable IC in the interval [0,1] as C →∞ for any given starting

point I0.36 I assess how well the model captures the salient empirical features of finan-

cial crises in the data. I define the crisis moments as follows

1. Crisis event is defined as a state where the capital is misallocated to households,

and the skin-in-the game constraint is binding. In this state, the risk premium

is high, and GDP growth is low, reflecting the empirical nature of the financial

crisis. This definition is similar to Maxted (2020), who defines crises as states

where the capacity constraint is binding. The amplification in my model refers to

the moments computed when the economy is in a crisis state.

2. Probability of crisis: The proportion of time that the economy spends in a crisis

35The parameters used for calibration are shown in Table (9) in Appendix C.4.
36I explain the numerical procedure to obtain the stationary distribution in detail in Appendix C.5.
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state. Analyzing a large set of advanced economies over several years, Reinhart

and Rogoff (2009) estimate this value to be 7% empirically. They define a crisis

as a recession accompanied by severe banking panic.

3. Duration of crisis: The average amount of months required to recover and revert

to normalcy after entering the crisis state. The average length of contraction

cycle from NBER recessionary data is around 18 months. The simulated mean

duration of the crisis is taken to be the model-implied persistence.

The right panel of Figure (3) plots the stationary distribution of the wealth share

for three different risk aversion levels. As risk aversion increases, the mass of wealth

share that lies in the crisis zone diminishes. It shrinks rather quickly, and this result

also holds if I allow for heterogeneous risk aversion, with the experts being less risk-

averse. The stationary distribution gives us additional insights that one cannot obtain

from studying the comparative static plots. Looking at the left panel of Figure (3), it

appears as if increasing risk aversion will not have a drastic impact on the frequency

of a crisis since the boundary I∗, the point at which the risk premium jumps and the

investment rate falls, moves only slightly to the right.37 However, higher risk aversion

increases the drift of wealth share a lot and pushes the stationary distribution away

from the crisis region to a greater extent. Since the experts operate with leverage, a

higher price of risk will have a positive effect on their wealth share. From figure (11)

in Appendix C.4 that plots the stationary distributions along with the crisis boundary,

we can see that the boundary I∗ is far from the stochastic steady state Î for higher

levels of risk aversion.38 This means that a much longer sequence of negative shocks

is required to push the system into the crisis region.

Comparison to Data: While the crisis is well defined and endogenously determined

in the model, defining the crisis episodes in the data is a challenge. Reinhart and Ro-

37The point I∗ denotes the point at which the experts start fire selling the capital to the households, and is
defined to be the crisis boundary. Formally, I∗ = BD?{IC | #C < 1} where #C is the share of capital held by the
experts.

38The stochastic steady state can be defined as Î := {IC : �I
C
(IC ) = 0}.
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goff (2009) determine the frequency of crisis states to be around 7% for the advanced

economy. This figure is much lower than the 29% of percentage NBER recessionary

periods from the year 1874 till today.39 The stark difference in the frequency between

Reinhart and Rogoff (2009) and NBER data is due to the fact that in the former, re-

cessionary periods need to feature severe banking panic to qualify as financial crises.

This relates to the findings by Muir (2017) and Gorton and Ordoñez (2020) that not all

recessions are financial crisis episodes. I take the probability of being in the crisis pe-

riod as 7% for the purpose of quantitative calibration. For each IC simulated from the

discretized version of its dynamics, the equilibrium quantities are computed using the

mapping given by the equilibrium functions.40 Following this, various model-implied

moments are computed and compared to the data, as will be explained. Since the em-

pirical risk premium is not observed, I estimate its mean and volatility using return

forecasting regression (31).

'4C+1 = 0 + � ∗�C/%C + �A42 ∗ 1'42 ∗�C/%C + � 5 8= ∗ 1 5 8= ∗�C/%C + &C (31)

I split the NBER recessionary periods into crisis (financial recession) and non-crisis

(non-financial recession) periods based on the definition of Reinhart and Rogoff (2009).

I then run predictive regressions with dividend yield (�C/%C) as the regressor and 1-

year ahead stock returns as the dependent variable. In Table (3), regression (I) uses

only the dividend yield as a regressor, whereas regressions (II) and (III) include a

dummy for non-financial recession and financial crisis, respectively. The indicator

functions 1'42 , and 1 5 8= take a value of 1 in months of NBER non-financial recession

and financial recession, respectively. The dummy variable corresponding to the finan-

cial crisis is positive and statistically significant as seen in Table (3).41 The R-squared

value is also higher when controlling for recession and financial crises, indicating bet-

ter predictive power. This confirms the finding in Muir (2017) that the risk premium

39The percentage of NBER recessionary periods since the beginning of Federal Reserve (1914) is around 20%.
40See Appendix C.5.5 for details.
41This finding is robust to using different time periods such as 1871-2018 (time since Shiller’s data is available),

and 1914-2018 (since the start of Federal Reserve).
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is much higher during financial crises and the predictive power is improved by con-

ditioning on the recessionary periods. I take the fitted value from regression (���) in

Table (3) and compute the standard deviation to obtain the volatility of the risk pre-

mium.

3.2 Tension between amplification and persistence of crises

A trade-off between the amplification and the persistence of financial crises arises in

the benchmark model. One such channel that generates this trade-off is the risk aver-

sion of the agents. The level of amplification required to match the empirical asset

pricing moments leads to two related problems. First, the probability of a crisis im-

plied by the model with high risk aversion becomes too small to reconcile with the

data. Second, and more importantly, the higher the amplification, the less persistent

the crisis episodes implied by the model. I first explain the trade-off between risk pre-

mium and crisis probability, and then explain how a higher amplification (conditional

risk premium) can only be obtained at the expense of lower persistence.

Figure (4) plots the unconditional risk premium, the volatility of the risk premium,

and the probability of crisis. With a risk aversion equal to 1, the parameters in Ta-

ble (9) lead to a 6.8% probability of crisis. The unconditional mean risk premium is

around 1.7%. One way to obtain even a higher risk premium is by pumping up the

risk aversion. However, increasing the risk aversion causes the probability of crisis to

fall rapidly. As the values in Table (4) suggest, to obtain an empirically observed un-

conditional risk premium of 5.5%, the risk aversion has to be around 12. For this high

level of risk aversion, the economy almost never enters into a crisis state.42 The reason

is that a higher risk premium increases the wealth share of experts in the stochastic

steady state and, therefore, a series of large negative shocks is required for the wealth

share to diminish enough to push the system into the crisis zone. The model-implied

standard deviation of the risk premium is 3.1% (see column 5 of Table (4)) which oc-

42See Julliard and Ghosh (2012) for a related finding in a rare disaster model.
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curs solely due to the non-linearity in the model between the normal and the crisis

regime. The point is that while the comparative static plots in Figure (3) feature a

large risk premium in some regions of the state space, if the dynamics of the model is

such that these regions are barely reached, then the model cannot match the high risk

premium in the data.

The persistence of financial crises is as much an important empirical phenomenon

as the amplification. A direct measure of persistence is the duration. Fixing the model

implied frequency of crisis at 7%, the average length of the crisis that the model can

generate is around 6 months, which is much shorter than observed in the data. While

there is disagreement regarding the empirical length of crises in the literature, the

consensus is that it is longer than eight months.43 Figure (6) plots the frequency distri-

bution of the crisis length observed in the model. Most of the mass resides in periods

less than 5 months, and a crisis length of more than 10 months is probabilistically very

small. The reason for this is that the only shocks in the model are Brownian, whose in-

crements are i.i.d normal. Hence, a negative shock that impairs the expert wealth share

is on average followed by a positive shock that restores the lost wealth quickly. This is

the case despite the model featuring leveraged experts. To be more concrete, imagine

that the system has just entered the crisis period following a series of negative shocks.

The capital price and investment rate are lower, putting a downward pressure on the

net worth of experts. However, the risk premium is higher, and as the experts oper-

ate with leverage, they earn more since they hold a larger proportion of risky capital.

The latter effect is larger than the former and makes the drift of the wealth share high

enough to push the system back to the normal regime. When risk aversion is higher,

the effect of the risk premium is even larger, resulting in the average length of the cri-

sis falling even more. In other words, higher risk aversion creates higher amplification

but dampens the persistence. Figure (6) shows that, as the risk aversion increases, the

mass of crisis length in 1-2 months increases. The crisis periods are far too infrequent

in the model when the agents are more risk averse. The dynamics explained above

43See He and Krishnamurthy (2013), Muir (2017) for example.

32



corroborate this observation.

This tension between persistence and amplification is unaffected by parameter val-

ues or utility functions. In the case of CRRA utility, and recursive utility with non-

unitary IES, the consumption-wealth ratio is time-varying and affects the drift of the

wealth share in addition to the risk premium, capital price, and investment. How-

ever, the effect of the risk premium highly dominates the other effects, and therefore

this tension is pervasive for more general preferences as well.44 There are also other

channels through which this tension becomes evident. In Appendix C.5.7, I show that

relaxing the skin-in-the-game constraint leads to a more amplified crisis, but reduces

the persistence. When the experts are constrained to keep a smaller (larger) fraction

of the equity on their balance sheet, the risk premium becomes larger (smaller) in the

crisis state, which increases (decreases) the drift of the wealth share of experts, leading

to a quick (late) recovery. This indicates that the tension observed is not a matter of cal-

ibration. Regardless of how one calibrates the model to generate a high amplification

to the extent that is observed in the data, the high risk premium in the amplified crisis

state causes the experts to repair their balance sheets by quickly building sufficient

capital, thereby failing to match the prolonged crisis that we see in the data. Table (10)

summarizes the ability of the benchmark model to succeed in different aspects. By far,

matching the intermediary leverage pattern and the non-linearity in output growth

seem to be the strongest suits of the model. For any reasonable parameters in cali-

bration, the model cannot resolve the tension between unconditional risk premium,

conditional risk premium, and crisis persistence. The focus of the next section is to

provide a resolution to this problem.

44I experiment with log, CRRA, recursive utility with IES=1, and recursive utility with IES different from 1.
Appendix C.4 solves the benchmark model with these utility functions using the finite difference up-winding
scheme. The results from simulation studies for the case of all utility functions are not included in the paper but
they display the same tension between the persistence and the amplification that is explained in the paper.
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4 Resolution of the tension between amplification and

persistence of crises

In this section, I quantify the model with stochastic productivity and exit of experts,

and show that it resolves the tension between persistence and amplification of finan-

cial crises and provides reasonable time variation in the prices. The definition of a

crisis event, probability, and duration of crisis is similar to the benchmark model. Fig-

ure (9) plots the stationary marginal distribution of the wealth share obtained through

simulation.45 Table (6) presents the average duration of crisis in the benchmark model

and the stochastic productivity model and compares them against the data. There is a

substantial controversy in the literature regarding the duration of crises (Reinhart and

Rogoff (2009)). The NBER reports that the Great Recession started in December 2007

and ended in June 2009, indicating an 18 month duration.46 To facilitate comparisons,

I adjust the parameters to generate a comparable probability of the crisis in the range

of 7-8% across the the benchmark and my model. The numbers in Table (6) can be

thought of as the ability of the models to generate the stated duration for a reasonable

crisis probability of 7-8%. Both of the benchmark models deliver a duration of crisis

that is much lower than observed in the data. The mean duration from my model

matches the data quite well although the 10th and 50th percentile values are lower.

The parameters used for calibrating my model are shown in Table (1).

Figure (7) plots the stationary distribution of the wealth share of experts during

the time the system spends in the crisis region. In the benchmark model (left panel),

a lot of the mass lies near the crisis boundary of 0.125 compared to the interior re-

gion where the wealth share is close to zero. The reason for this is that the benchmark

model has only one i.i.d Brownian shock. After a series of negative shocks hit the

economy, the system enters a crisis, leading to a sharp increase in the risk premium.

45The simulation method is similar to the benchmark model except that the equilibrium objects are two-
dimensional.

46The average duration of recession in the past 33 cycles from year 1854 to 2020 is around 18 months. Source:
https://www.nber.org/cycles.html.
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Since experts are always leveraged in equilibrium, the risk premium loads positively

on the drift of wealth share of experts. Moreover, the assumption of i.i.d Brownian

shock implies that a series of negative shocks is often followed by a positive shock.

Thus, the experts recapitalize quickly by capturing the high risk premium, leading to

short-lived crises. In contrast, the frequency distribution of the wealth share in the

crisis region in my model, as shown in the right panel in Figure (7), features fatter

tails. The economic mechanisms that generate this result rest on three forces. Firstly,

negative shocks to the capital impair the net worth of the experts just like in the bench-

mark model. This is the financial amplification channel that is widely covered in the

literature. The second force comes from stochastic productivity. The aggregate finan-

cial sector productivity is lower during a crisis state. The key comparative advantage

of the experts in my model is that they have a higher productivity rate of operating

capital. During bad times, this comparative advantage diminishes. A realistic crisis

frequency is obtained even for higher risk aversion levels due to stochastic productiv-

ity. With a constant productivity as in the baseline model, the risk-averse experts will

always remain wealthy by earning a large premium. Negative shocks to the capital in

the stochastic steady state will not be enough to generate realistic crisis events. In my

model, negative shocks to the capital also push the experts productivity down, which

negatively impacts the risk premium. Hence, a series of negative shocks reduces the

premium earned in the normal region and will put downward pressure on the drift of

wealth share, eventually causing sufficient deterioration in the net worth of experts to

generate crisis events.

The third force is the exit rate of experts, which is higher at the onset of a crisis.

While the overlapping generations capture the demographic changes relating to natu-

ral birth and death of agents, the exit rate captures the turnover of experts. When they

exit, they don’t consume all of their wealth immediately. Instead, they transition into

households until death. While the crisis is endogenously determined in my model, as

soon as the crisis boundary is hit, the turnover rate goes up to 32%. A higher exit rate

during a crisis parsimoniously captures the strikingly large number of financial sector
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executive turnover during a financial crisis, as evident in Figure (1). The fact that a

large fraction of the experts exit and become households means that the proportion

of agents who operate capital more productively is lower in times of distress than in

normal times. This has a dominating effect on the drift of wealth share and pushes the

economy deeper into the crisis since the drift is negatively affected by exit. The only

way for the economy to break out of the crisis is for a remaining smaller proportion of

the experts to be more productive again, since higher productivity pushes up the risk

premium, enabling the experts to rebuild their wealth.47 However, the rate at which

expert productivity reverts to its mean is low, and this sluggish reversion means that

the economy spends a long amount of time in a state of distress until the productivity

increases and has a dominant effect on the drift of wealth share. This leads to de-

layed recovery from the crisis. Once the system is back to normalcy, all capital in the

economy is held by the experts, and the financial amplification is shut down. High

exit acts as a trigger pushing the economy into a downward spiral, from which it is

harder to recover even with a subsequent a low exit. Without the eventual increase in

productivity, the economy features a net worth trap, as shown in Proposition 4.48

Table (7) compares the moments of key asset pricing and macroeconomic variables

between my model and the benchmark model. The unconditional risk premium of

5.5% is comparable to the empirical value, whereas, the benchmark model generates

a mere 1.7% premium. Importantly, my model allows for reasonable crisis dynamics

by simultaneously generating a high conditional risk premium of 18.2% and long a

duration of crisis of 20 months without compromising on the other dimensions. That

is, the unconditional mean leverage, GDP growth rate, investment-capital ratio, and

correlation between expert leverage and capital shock are comparable to the data.

To further understand the individual roles of stochastic productivity and exit rate

in delivering quantitative results, I compare my model against two other benchmark

47The consumption-wealth ratio of the agents is constant due to the assumption of a unitary IES. For a non-
unitary IES, the consumption-wealth ratio may also also increase due to increased productivity of the experts and
contribute positively towards the wealth share of experts.

48While Proposition 4 demonstrates this in a simpler model with constant productivity, the result carries over
to the richer model with fluctuating productivity as confirmed in simulation results.
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models: a) Model B1, which considers stochastic productivity but without exit, and b)

Model B2, which considers constant productivity and state-dependent exit. The trade-

offs analyzed in the benchmark model also carry over to model B1. While stochastic

productivity helps in generating more time variation in the risk premium compared to

the benchmark model, the duration of crisis implied is lower compared to the data, as

seen in Table (7). Without state-dependent exit, the proportion of experts who recap-

italize their balance sheets by earning a large risk premium is high, and the economy

recovers quickly from a crisis as a result. Hence, features related to the exit of inter-

mediaries or bank runs are crucial in explaining the slow recovery from a crisis. This

relates to Gertler, Kiyotaki and Prestipino (2020) who build a quantitative macroe-

conomic model with bank runs as the main driver behind the 2008 financial crisis.

However, incorporating exit without stochastic productivity is not sufficient to gener-

ate realistic crisis dynamics. Table (7) presents the results of model B2 that includes

state-dependent exit but with constant productivity. When the exit rate is calibrated to

empirical executive turnover rates, the model B2 leads to a dystopian economy with

perennial recession. During bad times, a higher exit rate of experts pushes the econ-

omy into crisis. Without the offsetting force of mean-reverting productivity, the effect

of the exit rate continues to dominate the drift of wealth share, trapping the economy

in a distressed state around 91% of the time. For a higher exit rate, the economy fea-

tures a net worth trap. Formally, the ratio �̃0 from Proposition 4 goes below the value

of 2, which means that the density features an infinite mass at the point I = 0. Thus, the

economy gets trapped inefficiently where all capital is held by less productive house-

holds.

My model generates a larger drop in the investment rate in the crisis period but

falls short of the negative investment rate observed in the data. During the last quarter

of 2008, private domestic investment in the United States fell by approximately 8%.

The q-theory result in the model ties the investment rate tightly to the capital price.

Hence, the capital price needs to fall drastically to generate a fall in the investment rate

to the extent that is observed in the data. My model is certainly an improvement over
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the benchmark in this regard, but more work needs to be done in jointly matching the

investment and output dynamics.49 Lastly, the model implied unconditional volatility

of the risk premium is 4.8%, well in line with the empirical value of 4.7% reported

in Table (4). Overall, my model does a good job of balancing the persistence and the

amplification, and delivers a reasonable time variation in the prices.

5 Conclusion

A financial crisis is characterized by a spike in the risk premium, and a sluggish re-

covery. Macro-finance models with leveraged intermediaries have trouble explaining

these two features simultaneously, especially when they are calibrated to match both

conditional and unconditional moments in the data. As a resolution to this puzzle, I

have built a macro-finance asset pricing model with experts facing productivity shocks

and a state-dependent exit rate that explains salient features of a financial crisis. A

simpler model with constant expert productivity and no exit cannot simultaneously

generate amplified and persistent financial crises. I show that any auxiliary feature in

the simpler benchmark model that amplifies a crisis necessarily dampens its persis-

tence.

The richer model with stochastic productivity and a state-dependent exit rate of

the experts resolves this tension and quantitatively generates a high risk premium, a

large drop in the output, a decreased financial intermediation, and prolonged distress

periods. The twin forces of state-dependent exit and stochastic productivity are at the

core of improved dynamics in my model. In particular, a higher exit rate and lower

productivity of experts in bad times forces the economy to dip deeper into recession,

which eventually revives once productivity mean reverts. The model also generates a

large time variation in the risk prices due to the stochastic nature of expert productiv-

ity, which is absent in the benchmark model. A high exit at the onset of a crisis acts

49Note that I have assumed a simple logarithmic form to model technological illiquidity following Brunner-
meier and Sannikov (2016). Using other functional forms, for example, as found in Di Tella (2017), also fails to
generate a large drop in the investment during crisis periods.
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as a trigger trapping the economy in distressed states even after exit rate reverts nor-

malcy. Thus, a short period of high management turnover during distressed periods

causes long lasting economic impacts. An interesting avenue for future research is to

build a model with endogenous expert productivity, which is an exogenous force in

my model. I have utilized a novel method of solving the model based on active ma-

chine learning that encodes the economic information as regularizers in a deep neural

network. The algorithm is scalable and has the potential to solve high-dimensional

problems with less effort in the numerical setup, opening up new avenues to model

asset prices with frictions in potentially large dimensions.
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A Figures and Tables

A.1 Figures

Figure 1: Executive departures in financial institutions

Note: The line indicates the proportion of the key executives departures in the financial institu-
tions. Data is from ExecuComp database and is aggregated at a quarterly frequency from 1990
till 2015.
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Figure 2: Model solution

Note: Equilibrium values as functions of the state variable wealth share (IC) for different values
of expert productivity (04,C).
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Figure 3: Risk premium and stationary distribution

Note: Left panel presents a static comparison of experts risk premium for three different levels
of risk aversion. Right panel presents the stationary distribution of expert wealth share for
three levels of risk aversion.

Figure 4: Trade-off between risk premium and probability of crisis

Note: Figure shows the trade off between the unconditional asset pricing moments and the
probability of crisis for different risk aversion parameters (RA). The dashed line represents
expected risk premium (see left axis). The full line represents standard deviation of risk pre-
mium (see right axis). Risk aversion decreases from left to right. The risk premium moments
and probability of crisis are computed by simulating the model at monthly frequency for 5000
years. The figure displays annualized numbers. The empirical risk premium estimated using
regression (31) is 5.5%.
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Figure 5: Tail analysis of stationary distribution: net worth trap

Note: The lines plot the quantity �̃ := 2�I(0)
(�I(0))2 that determines whether the stationary density

is non-degenerate. The dashed and dotted lines are the threshold values below which a net
worth trap arises in the economy.

Figure 6: Duration of crisis

Note: Frequency distribution of average crisis duration for different values of Risk aversion
(RA). The graph shows only till months 10 since the frequency for months larger than 10 is
negligible. The duration is computed by simulating the model at monthly frequency for 5000
years. The observations are annualized.
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Figure 7: Left tail of the marginal stationary density

Note: Left panel: Tail of experts wealth share distribution from the benchmark model. Right
panel: Tail of experts wealth share distribution from the model with stochastic productivity.
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A.2 Tables

Table 1: Calibrated parameters

Description Choice Target

Technology

Volatility of capital (�) 0.06 Vol (Risk premium)
Discount rate (�) 0.02 Literature
Depreciation rate of capital (�) 0.08 GDP growth rate
Investment cost (� ) 7 Investment-capital ratio
Productivity gap (04 − 0ℎ) 0.1 Conditional risk premium
Correlation of shocks (!) 0.5 Data

Utility
Risk aversion (�) 7 Literature

Demographics
Mean proportion of experts (Ī) 0.05 Literature
Turnover (�3) 0.03 Literature

Expert Productivity
Mean reversion rate (�) 0.01 Data
Variance (�) 12.5 Data
Upper level (0̄4) 0.2 Unconditional risk premium

Exit rate
Normal state (�=) 0.02 Data
Crisis state (�2) 0.32 Data

Friction Equity retention (") 1.0 Literature

Note: All values are annualized.
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Table 2: Executive turnover rate

(�) (��) (���)
�C/%C -0.03 -0.03 -0.13

(0.12) (1.87) (0.52)
FC 0.14 0.07

(0.28) (0.15)
FC ∗ 1 5 8= -3.65*** -3.89***

(2.65) (2.90)
28AC -0.06 -0.06

(1.53) (1.43)
28AC ∗ 1 5 8= ***0.14 0.15***

(2.30) (2.83)
No. of obs. 89 89 89
Adj. R2 0.03 0.00 0.05

Note: The variables 1 5 8= represents financial crisis episodes taken form Reinhart and Rogoff
(2009). The dividend yield data is from Robert Shiller’s website. The variable FC denotes the
wealth share of financial instutions (BHCs) from Compustat database, and the variable 28AC
denotes the aggrgate cost to income ratio of financial institutions in the US. I use a quarterly
frequency from the years 1983 to 2017. Model (�) includes only the wealth share variable and
its interaction term. Model (��) includes only the cost to income ratio (inverse of productivity)
and its interaction term. Model (���) includes both wealth share and cost to income ratio along
with their respective interaciton terms. Cost to income ratio is an inverse measure of expert
productivity.
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Table 3: Risk premium estimation

(�) (��) (���)
const -0.02 0.00 0.00

(0.00) (0.01) (0.03)
�C/%C 2.13*** 1.17** 1.15**

(3.52) (1.87) (0.53)
1'42 2.21*** 1.82***

(4.15) (0.60)
1 5 8= 2.18***

(2.99)
No. of obs. 906 906 906
Adj. R2 0.02 0.04 0.05

Note: The variables 1'42 and 1 5 8= represents recessionary and financial crisis episodes, respec-
tively. Recessionary episodes are taken from NBER, and financial crisis periods are taken form
Reinhart and Rogoff (2009). The dividend yield and stock return data are from Robert Shiller’s
website. I use a monthly frequency from the years 1945 to 2021. Model (�) excludes both
dummy variables to zero. Model (��) excludes financial crisis dummy but includes recession
dummy. Model (���) includes both dummy variables.

Table 4: Risk premium moments and probability of crisis

Data
Benchmark Model

(RA=1)
Benchmark Model

(RA = 20)

All Recession Crisis All Crisis All Crisis

E(Risk premium) 5.5 12.8 25.0 1.7 13.4 5.5 -
Std(Risk premium) 4.7 6.7 7.5 3.1 1.3 0 -
Prob. of Crisis 7.0 6.8 0

Note: Empirical risk premium moments are computed from the predictive regression (31).
Probability of crisis is taken from Reinhart and Rogoff (2009). The model implied moments
and probability of crisis is computed by simulating the model at monthly freqnency for 5000
years. All values are annualized.
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Table 5: Data moments and methodology

Mean Std dev Data source

Risk premium* (%) 5.5 4.7 Predictive regression
Risk free rate* (%) 4.0 0.9 Amit Goyal’s website
GDP growth*(%) 3.3 3.9 FRED
Investment rate (%) 14 4.7 He and Krishnamurthy (2019)
BHC Leverage 3.77 - He and Krishnamurthy (2019)
Corr(BHC Leverage, GDP cycle) -0.18 - He, Kelly and Manela (2017)
Probability of Crisis (%) 7 - Reinhart and Rogoff (2009)
Duration of Crisis 18-months - NBER cycle

Note: The Table presents unconditional mean and standard deviation of key variables in the
data along with the methodology to compute the variables. The variables marked with aster-
isk are estimated using quarterly frequency data between 1950Q1 till 2021Q1. All percentage
values are annualized.

Table 6: Duration of crisis

Data
(NBER)

Benchmark model
(RA=1, IES = 1)

Benchmark model
(RA=2, IES = 1)

My model
(RA=5, IES=1)

10th percentile 8.0 1.0 1.0 1.0
50th percentile 13.5 2.0 2.0 3.0
90th percentile 31.2 13.0 16.0 49.0
Mean 17.5 6.0 6.5 17.0

Note: Data for computing the empirical duration of crisis is from NBER website. The last three
columns presents the model implied duration percentiles obtained from simulating each of the
benchmark models for 5000 years at monthly frequency.
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Table 7: Summary of key moments

Data My model Benchmark B1 B2

All All Crisis All Crisis All Crisis All Crisis
Risk premium (% mean) 5.5 5.5 18.2 1.7 13.4 1.9 14.1 12.7 13.4
Risk premium (% sd) 4.7 4.8 5.2 3.1 2.4 3.5 3.7 2.7 2.9
Investment-capital ratio (% mean) 14 14 4.3 7.0 5.6 8.2 7.5 5.5 5.0
BHC Leverage 3.77 2.7 3.68 3.5 5.8 2.7 3.2 3.2 3.5
GDP growth (% mean) 3.2 2.5 -7.1 2.3 -8.0 3.1 -8.2 -6.3 -7.9
Corr(BHC Leverage, GDP) -0.18 -0.18 -0.01 -0.17 -0.01 -0.15 -0.03 -0.28 -0.05

Probability of Crisis (%) 7.0 8.0 6.8 6.3 90.8
Duration of Crisis (months) 18.0 20.0 4.0 5.0 13.0

Note: Comparison of model implied moments. The % values are annualized. The calibrated
parameter for my model is given in Table (1). The benchmark model does not feature stochas-
tic productivity or exit. The model B1 considers a stochastic productivity but without exit.
The model B2 has constant productivity but the experts have a state-dependent exit rate. The
calibrated parameters for the benchmark models are given in Table (9).
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B Appendix: Main proofs

B.1 Model with stochastic productivity

B.1.1 Proof of Proposition 1

The law of motion of wealth for the experts and the households are given in the opti-

mization problems (7) and (8) respectively. Using the law of large numbers to aggre-

gate the wealth of individual household and expert, we get

3,ℎ,C

,ℎ,C
=

(
AC − �ℎ −�3 + �ℎ,C(�'ℎ,C − AC) +

(1− Ī)�3
1− IC

+ �C
,4,C

,ℎ,C

)
3C + �ℎ,C(� + �@C )3/

:
C + �ℎ,C�

0
C 3/

0
C

3,4,C

,4,C
=

(
AC − �4 −�3 + �4,C&4,C +

Ī�3
IC
− �C

)
3C + �4,C(� + �@,:

C )3/
:
C + �4,C�

@,0
C 3/0C

where ,ℎ,C =
∫
9∈�F 9,C39 and ,4,C =

∫
9∈�F 9,C39 denotes aggregated wealth among re-

spective group, IC =
,4,C

,ℎ,C+,4,C
=

,4,C
@C C

, and �4,C := "C#C
IC

,�ℎ,C := 1−"C#C
1−IC from the capital mar-

ket clearing condition.50 The terms containing �3 and Ī are due to the overlapping

generations assumption, and the terms with �C is due to the exit of the experts. By

Ito’s lemma, the dynamics of the wealth share becomes

3IC

IC
=
3,4,C

,4,C
−
3(@C C)
@C C

+
3〈@C C , @C C〉
(@C C)2

−
3〈@C C ,,4,C〉
(@C C,4,C)

where51

3 C

 C
= ()(�C) − �)3C + �3/:C

50Note that IC =
,4,C
@C C

and #C =
 4,C
 C

. Moreover, �F4 ,C (� + �
@

C
)IC + �Fℎ ,C (� + �

@

C
)(1− IC ) = (� + �

@

C
) and similarly for

�
@,0
C

. Using these, we can relate �F 9 ,C to �9,C .
51Since the investment rate is the same for all agents, the evolution of the aggregate capital  C is the same as the

evolution of : 9,C . To see this, write 3 C
 C

=
3 4,C
 C
+ 3 ℎ,C

 C
= #C

3 4,C
 4,C
+ (1−#C )

3 ℎ,C
 ℎ,C

and the rest follows from (2).
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Applying Ito’s lemma, we get

3(@C C)
@C C

= (&4,C"C + (1− "C)&ℎ,C −
(04,C − �C)

@C
+ AC)3C + (� + �@,:

C )3/
:
C + �

@,0
C 3/0C

3〈@C C , @C C〉
(@C C)2

= ((�@,:
C + �)

2 + (�@,0
C )

2 + 2!(�@,:
C + �)�

@,0
C )3C

3〈@C C ,,4,C〉
@C C,4,C

=
(
�4,C(�@,:

C + �)
2 + �4,C(�@,0

C )
2 + 2!(�@,:

C + �)�
@,0
C

)
3C

and the result follows from here after some algebra. �

Note that we can write �4,C&4,C = �4,C"−1
C (�'4,C − AC − (1− "C)&ℎ,C) from the asset pricing

condition in C.1, which allows us to write the experts wealth dynamics after aggregat-

ing the optimal policies and using law of large numbers as

3,4,C

,4,C
=

(
AC − � −�3 +

#C
IC
(�'4,C − AC) − (1− "C)

#C
IC
&ℎ,C +

Ī�3
IC
− �(04,C , IC)

)
3C

+
"C#C
IC
(� + �@,:

C )3/
:
C +

"C#C
IC

�
@,0
C 3/0C

B.1.2 Proof of Proposition 2

The value function conjecture is

* 9,C =
(�9,C(IC , 04,C) C)1−�

1− �

where �9,C follows the stochastic differential equation
3�9,C
�9,C

= ��
9,C3C + �

�,:
9,C 3/

:
C + �

�,0
9,C 3/

0
C

whose drift and volatility needs to be determined in the equilibrium. The HJB equa-

tion is given by

sup
�, 

5 (� 9,C ,* 9,C) + �[3* 9,C] = 0 (32)

where 5 (� 9,C* 9,C) = (1− �)�* 9,C

(
log� 9,C − 1

1−� log
(
(1− �)* 9,C

) )
. The HJB equation is de-

rived directly in terms of the aggregate capital  C instead of the wealth share IC . For

ease of notation, I will denote the wealth share of the experts and households as I4,C
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and Iℎ,C respectively but it is to be understood that I4,C = IC and Iℎ,C = 1− IC . The value

function derivatives are

%* 9,C

%�9,C
=  

1−�
C �

−�
9,C ;

%* 9,C

% C
= �

1−�
9,C  

−�
C (33)

%2* 9,C

%�2
9,C

= −� 1−�
C �

−�−1
9,C ;

%2* 9,C

% 2
C

= −��1−�
9,C  

−(1+�)
9,C ;

%2* 9,C

%�9,C% C
= (1− �)( C �9,C)−�

Applying Ito’s lemma to * 9,C and using HJB equation (32), we get

sup
�

�(�9,C C)1−�[log
� 9,C

,9,C
− log�9,C + log(@CI 9,C)] + (�9,C C)1−�(Φ(�) − �) (34)

− �

2
(�9,C C)1−��2 + (�9,C C)1−���9,C − (�9,C C)

1−� �

2
((��,:

9,C )
2 + (��,0

9,C )
2 + 2!��,:

9,C �
�,0
9,C )

+ (1− �)(�9,C C)1−�(���,:9,C + !��
�,0
9,C ) + �C(*ℎ,C −*4,C) = 0

Writing the value function expression in terms of the wealth, we have

* 9,C =
(�̃9,C,9,C)1−�

1− � ; 5 (� 9,C ,* 9,C) = (1− �)�* 9,C(log
� 9,C

,9,C
− �̃9,C) (35)

where �̃9,C =
�9,C
@CI 9,C

and I 9,C =
,9,C

@C C
are used to obtain (35). At the optimum, the marginal

utilities of wealth and consumption become equal. Therefore,

%* 9,C

%,9,C
=

% 59,C

%� 9,C

�̃
1−�
9,C ,

−�
9,C = (1− �)�

* 9,C

� 9,C
=⇒

� 9,C

,9,C
= �

This proves the optimal consumption policy. The stochastic discount factor for recur-

sive utility is given by

�9,C = exp
(∫ C

0

% 5 (� 9,B ,* 9,B)
%*

3B

)
%* 9,C

%,9,C
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From (35), we get

�9,C = (1− �)exp
(∫ C

0

[
(1− �)�

(
log� − �̃9,C

) ]
3B

)
* 9,C

,9,C

This implies that �(�9,C) = �

(
*9,C

,9,C

)
. To compute the R.H.S., we have to obtain 3

(
*9,C

,9,C

)
.

Let E(�9,C , I 9,C , @C , C) :=
*9,C

,9,C
. Using the derivatives

1
E

%E

%�9,C
=

1− �
�9,C

;
1
E

%E

%I 9,C
= − 1

I 9,C

1
E

%E
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= − 1

@C
;

1
E

%E

% C
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 C

and applying Ito’s lemma, we get

3E

E
= [. . . . . . ]︸  ︷︷  ︸
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Applying Ito’s lemma to �9,C(IC , 04,C), we have
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C

Comparing with the SDE (18) and matching the diffusion coefficients, we have
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Collecting the diffusion terms, using �I,8
4,C = �I,8

C ,�I,8
ℎ,C = −

IC
1−IC �

I,8
C ; 8 ∈ {:, 0} in equation

(36), and comparing it to the SDF equation

3�9,C

�9,C
= −AC3C − �:9,C3/:C − �09,C3/0C

we get the desired result. �

Plugging in the optimal consumption-wealth ratio into the HJB equation (34), we ob-

tain the expressions for ��
9,C
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4,C ) − (Φ(�C) − �) − �

(
log� − log �4,C + log(IC@C)

)
(37)

+
�

2

(
(��,:4,C )

2 + (��,04,C )
2 + 2!��,:4,C �

�,0
4,C + �

2
)
− �C

1− �

((
�ℎ,C

�4,C

)1−�
− 1

)
��
ℎ,C = (� − 1)(���,:

ℎ,C + !��
�,0
ℎ,C) − (Φ(�C) − �) − �

(
log� − log �ℎ,C + log((1− IC)@C)

)
(38)

+
�

2

(
(��,:
ℎ,C)

2 + (��,0
ℎ,C)

2 + 2!��,:
ℎ,C�

�,0
ℎ,C + �

2
)

B.1.3 Proof of Proposition 3

Applying Ito’s lemma to @(IC , 04,C), we have
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Matching the drift and the volatility terms, we get
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where �04,C = �(0̄4 − 04,C)(04,C − 0C) and �04,C = �(0̂4 − 04,C) Plugging in the expression

for �I,:
C and �I,0

C from the dynamics of wealth share (16) in the above equation and

rearranging, we get the result. �

B.1.4 Proof of Proposition 4

Assume that the stochastic process -C follows a geometric Brownian motion with an

upper reflecting barrier. That is, -C ∈ (0, Ḡ]). The Kolmogorov forward equation is

given by

0 = − %

%G
(�GG 5 ) + 1

2
%2

%G2 ((�
GG)2 5 ) (39)

In this case, the stationary distribution can be written in closed form as52

5 (G) =
2�
�2 − 1

Ḡ
2�
�2−1

G
2�
�2−2 (40)

Similarly, the asymptotic solution for the KFE of 1-dimensional model with constant

productivity and exit is given by

5 (I) ∼
(

2�I(0)
(�I(0))2 − 1

)
I

2�I (0)
(�I (0))2−2

(41)

where

�I(0) = 04 − �(0)/@(0) − 2̂4 + (�4(0) − 1)(�@(0) + �)(�4(0) − (�@(0) + �)) +�3(Ī − I(0)) + �C(0)
(42)

�I(0) = (�4(0) − 1)(�@(0) + �) (43)

�

52See Brunnermeier and Sannikov (2014) for the change of variable used in deriving a closed form for the KFE.
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C Internet Appendix (IA)

C.1 Proof of the Asset pricing conditions

The expected return that the experts earn from investing in the capital is given by

3AEC = (�'4,C − (1− "C)&ℎ,C)3C + "C(�@,:
C + �)3/

:
C + "C�

@,0
C 3/0C

where &ℎ,C = �:
ℎ,C(�

@,:
C + �) + �0ℎ,C�

@,0
C + !(�0ℎ,C(� + �

@,0
C ) + �

@,0
C �:

ℎ,C). That is, (1 − "C)&ℎ,C is

the part of the expected excess return that is paid by the experts to the outside equity

holders, which is netted out. Since the experts hold a fraction "C of the inside equity,

the volatility terms are multiplied by this quantity. Consider a trading strategy of

investing $1 into the capital at time 0. Let EC be the value of this investment strategy

at time C. Then, we have 3EC
EC
= 3AEC , and

3(�4EC)
�4EC

= (−AC + �'4,C − (1− "C)&ℎ,C − "C&4,C)3C + diffusion terms

where &4,C = �:4,C(�+ �
@,:
C ) + �04,C�

@,0
C +!(�04,C(�+ �

@,:
C ) + �:4,C�

@,0
C ), and �4,C follows the pro-

cess in (5). Since �4EC is a martingale, the drift equals to zero, which implies

�'4,C − AC = "C&4,C + (1− "C)&ℎ,C

The households do not issue outside equity but are exposed to the risk from experts

through the equity issuance of the latter. Following similar steps, we get the asset

pricing condition for the households as

�'
ℎ,C − AC = &ℎ,C

where &ℎ,C = �:
ℎ,C(� + �

@,C
C ) + �0ℎ,C�

@,0
C + !(�04,C(� + �

@,:
C ) + �:ℎ,C�

@,0
C ) �
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C.2 Numerical solution

Static step: We need to solve for the equilibrium quantities {#C , (� + �
@,:
C ),�

@,0
C , @C}.

The other equilibrium quantities �4,C ,�ℎ,C ,�:4,C ,�
0
4,C ,�

:
ℎ,C ,�

0
ℎ,C , AC ,�

'
4,C ,�

'
ℎ,C , �C can be derived

from the goods market clearing and the HJB first order conditions. To solve for these

four quantities, four equations are required. The first equation is given by subtracting

the expected return of each type of the agent. That is, we have

"C(&4,C − &ℎ,C) = �'4,C − �'ℎ,C

The experts will issue maximum outside equity " whenever their risk premium is

larger than that of households. Thus, we can replace "C by " whenever # < 1. Plugging

in the expression for the return processes from (4), and using (10), (9), and Proposition

2, we get

04,C − 0ℎ
@C

= "

(
("#C − IC)

(
(�@,:
C + �)

2 + (�@,0
C )

2 + 2!(� + �@,:
C )

)
(44)

×
(
(1− �)

(
%�ℎ,C

%IC

1
�ℎ,C
− %�4,C

%IC

1
�4,C

)
+ 1
IC(1− IC)

)
+ (1− �)

(
%�ℎ,C

%0ℎ,C

1
�ℎ,C
− %�4,C
%04,C

1
�4,C

)
�04,C(�@,0

C + !(� + �
@,:
C ))

)
The second condition comes from the goods market clearing

�@C = #C(04,C − �C) + (1−#C)(0ℎ − �C) (45)

The third and fourth conditions are the return variance components

�
@,:
C + � =

�

1− 1
@C

%@C
%IC
("#C − IC)

(46)

�
@,0
C =

1
@C

%@C
%04,C

�04,C

1− 1
@C

%@C
%IC
("#C − IC)

(47)
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which are partial differential equations solved using a Newton-Raphson scheme. The

algorithm is as follows. Consider tensor grids of size #I and #0 with step size Δ8 ,

and Δ9 where {8}#I

1 , { 9}#0

1 denote the dimensions for the wealth share and the expert

productivity respectively. There are three following regions in the state space

• #C < 1 and "C = "

• # = 1 and "C = "

• # = 1 and "C > "

In the first region, the households also hold capital and hence equation (13) holds with

equality. In this case, the equations (44), (45), (46),and (47) are used to solve for #C , @C ,

(�+ �@,:
C ), and �

@,0
C . In the second region, the households do not hold capital and hence

the equation (13) holds with an inequality. In this case, set #C = 1, and use (44),(46),
(47), and (45) to solve for "C ,@C , (� + �@,:

C ), and �
@,0
C . If "C < ", then set "C = ", otherwise

the third region is entered.

• For the first iteration on the wealth share {8 = 1,∀9}, set #C = 0, and take the

limiting case of the goods market clearing condition to get @C . That is

inf
I→0+

@C =
0ℎ� + 1
�� + 1

(48)

• For iterations 8 > 1,∀9, use the discretized versions of the equations (46) and (47)

(�@,: + �)8,9 = �

(
1− 1

@8,9

( @8,9 − @8−1,9

Δ8
I8(

#8,9

I8
− 1)

))−1

(49)

(�@,0)8,9 =
( @8,9 − @8,9−1

Δ9
�04,9

) (
1− 1

@8,9

( @8,9 − @8−1,9

Δ8
I8(

#8,9

I8
− 1)

))−1

(50)

along with the equations (44), and (45) to solve for @8,9 ,#8,9 , (� + �@)8,9 , (�@,0)8,9 .53

Note that in this region, "C = " since the risk premium of experts is larger than

53For 9 = 1, set %@C
%04,C

= 0 since 04,C ∈ [04 , 0̄4 ]. That is, the lower and the upper boundaries 04 and 0̄4 respectively
act as reflecting barriers forcing the derivative of the price to be zero.
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that of households. The set of non-linear equations is solved using the Newton-

Raphson method. Repeat this procedure until #C = 1, in which case the system

enters the second region. Then, use (44), (45), (49), and (50) to solve for "8,9 , @8,9 ,

(� + �@,:)8,9 and (�@,0)8,9 . If "8,9 < ", set "∗
8,9 = ", otherwise set "∗

8,9 = "8,9 . When

"8,9 > ", the system is in the third region where all capital is held by the experts

(#8,9 = 1), and risk is perfectly shared between the experts and the households by

setting &4,C = &ℎ,C . The value of "∗C is obtained such that "∗C = 0A6B>;E4
"

&4,C − &ℎ,C =

0. Since the premiums &4,C , &ℎ,C depend on the "C , I iterate between these two

quantities until |"=4FC − ">;3C | < C>; for some tolerance level.

Time step: Applying Ito’s lemma to �9,C(IC , 04,C), matching the drift terms, and aug-

menting the resulting coupled PDEs with a time step (falst-transient method), we get

��
9,C �9,C =

%�9,C

%C
+
%�9,C

%IC
�IC +

%�9,C

%04,C
�0C +

1
2
%2�9,C

%I2
C

(
(�I,:

9,C )
2 + (�I,0

9,C )
2 + 2!�I,:

9,C �
I,0
9,C

)
+ 1

2
%2�9,C

%02
4,C

�2
04,C

+
%2�9,C

%IC%00,4

(
IC�

I,:
9,C �04,C! + �0�

I,0
9,C

)
(51)

The coefficients �IC and �IC can be computed from the equilibrium quantities in the

static step and ��
9,C is computed from the equations in (37). The PDEs are solved using

the neural network method explained in Section C.3. Using the updated function �9,C ,

the static step is performed again. The procedure is repeated until the function �9,C

converges upto a pre-specified tolerance level.

C.3 Neural network solution method

The outer loop involves solving for a de-coupled system of quasi-linear PDEs- one

for the households and one for the experts, taking as given the equilibrium quantities

that are determined from the static loop. The PDE obtained at :Cℎ time iteration by
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applying Ito’s lemma to �9,C(IC , 04,C) and using the HJB equation (21) is54

�� � =
%�

%C
+ %�

%I
�I + %�

%0
�0 + 1

2
%2�

%I2

(
(�I,:)2 + (�I,0)2 + 2!�I,:�I,0

)
+ 1

2
%2�

%02 �
2
0 (52)

+ %2�

%IC%0

(
I�I,:�0! + �0�I,0 ) ; ∀(C, I, 0) ∈ [) −ΔC,) − (: − 1)ΔC] ×Ω

with the boundary conditions

�(I, 0, C) = �̃; ∀(C, I, 0) ∈ () − (: − 1)ΔC) ×Ω (53)

%�(0, 0, C)
%IC

=
%�(1, 0, C)

%IC
= 0; ∀(C, 0) ∈ () − (: − 1)ΔC) × %Ω0

%�(I, 04 , C)
%04,C

=
%�(I, 0̄4 , C)

%04,C
= 0; ∀(C, I) ∈ () − (: − 1)ΔC) × %ΩI

where ΩI and Ω0 are the domains of state variables I and 04 respectively, and Ω =

ΩI ×Ω0 . I take advantage of the universal approximation theorem that states that

a neural network with at least one hidden layer can approximate any Borel mea-

surable function, and solve for the function �(I, 0,) − :ΔC) that is governed by the

PDE (52). Starting from an arbitrary terminal value at time T, the task is to solve for

�(I, 0,) −ΔC) in the first time iteration. More generally, in :Cℎ time iteration, the func-

tion �(I, 0,) − :ΔC) is found such that it respects (52) satisfying the given boundary

conditions at time ) − (: − 1)ΔC. Equivalently, we can start from �(I, 0, C +ΔC) for some

time period C, and solve for �(I, 0, C). In this case, the initial condition �̃ denotes the

value from the previous time step �(I, 0, C +ΔC). The PDE coefficients and the terminal

value are in the form of a grid but not all grid points are required in the algorithm as

will be explained. While the space of admissible solutions to the function given the

sample data from terminal value and other boundary conditions is potentially large, I

use the residuals from PDE and the boundary conditions as regularizers that constrain

the space to a manageable size. This encoding of prior information into the learning

algorithm amplifies the information content from the economic problem and makes it

54I ignore the time and agent indices in order to avoid cluttering of notations. The productivity of the expert
04,C , and the volatility �04,C are denoted as 0 and �0 for simplicity in the PDEs.
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possible for the deep neural network to head towards the correct solution even with

the limited training sample. Consider the PDE residual from (52)

5 :=
%�

%C
+ %�

%I
�I + %�

%0
�0 + 1

2
%2�

%I2

(
(�I,:)2 + (�I,0)2 + 2!�I,:�I,0

)
+ 1

2
%2�

%02 �
2
0 (54)

+ %2�

%I%0

(
I�I,:�0! + �0�I,0 ) − �� �

Starting from a neural network �̂(I, 0, C;Θ) parameterized by an arbitrary Θ, the opti-

mal parameter Θ∗ that ensures that �̂(I, 0, C;Θ) is close to � is obtained by mimimizing

the following loss function

ℒ = � 5ℒ 5 +� 9ℒ 9 +�1ℒ1 +�1
2ℒ1

2 +�2
2ℒ2

2 (55)

where55

PDE loss ℒ 5 =
1
# 5

# 5∑
8=1

| 5 (I 8
5
, 0 8

5
, C 8
5
)|2 (56)

Bounding loss-1 ℒ 9 =
1
#9

#9∑
8=1

| �̂(I 89 , 0 89 , C 89) − �̃ 8 |2 (57)

Bounding loss-2 ℒ1 =
1
#1

#1∑
8=1

|∇�̂(I 8
1
, 0 8
1
, C 8
1
)|2 (58)

Crisis loss-1 ℒ1
2 =

1
#1
2

#1
2∑

8=1

| �̂(I 82 , 0 82 , C 82) − �̃ 8 |2 (59)

Crisis loss-2 ℒ2
2 =

1
#2
2

#2
2∑

8=1

| 5 (I 82 , 0 82 , C 82)|2 (60)

The parameters (� 5 ,� 9 ,�1 ,�2) are weights attached to the corresponding losses,

(I 8
9
, 0 8
9
, C 8
9
, �̃ 8)#9

8=1 and (I 8
1
, 0 8
1
, C 8
1
)#1
8=1 denote the boundary training data, and (I 8

5
, 0 8

5
, C 8
5
)# 5

8=1

denote the collocation points for the PDE residual 5 (I, 0, C). The crisis boundary col-

55I write ∇�̂ to denote
[
%�̂
%I

%�̂
%0

])
.
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location points (I 82 , 0 82 , C 82)#2

8=1 are sampled from the neighborhood of state space where

fire-sale gets initiated, that is endogenously determined in the static inner loop. The

quantities (# 5 ,#9 ,#1 ,#1
2 ,#2

2 ) denote the number of points to minimize the PDE loss,

the two bounding losses, and the two crisis boundary losses respectively. By encoding

the crisis boundary loss, the neural network is forced to learn better around the crisis

threshold which is where the policy functions are highly non-linear. The sampling is

done uniformly with replacement in each domains.

Table 8: Network architecture.

Parameters Choices

No. of hidden layers 4
Hidden units [30,30,30,30]
Activation functions Tanh (Hidden), Linear (Output)
Optimizer ADAM + L-BFGS-B
Learning rate 0.01
Loss function weights(� 5 ,� 9 ,�1 ,�1

2 ,�2
2) {1,1,0.001,1,1}

Batch size Full batch

Figure 8: Neural network architecture

Note: The quantities � and Ω denote the domain of the state space pertaining to the initial
and boundary conditions respectively. The domain Ω2 refers to the crisis neighborhood and is
endogenously determined in the inner static loop.
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Figure 9: Stationary density of wealth share

Note: The figure displays stationary marginal density of endogenous wealth share obtained
from simulating the model for 5000 years at monthly frequency. The observations are annual-
ized.
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C.4 Benchmark model

The capital price per unit @C follows the process

3@C

@C
= �

@

C 3C + �
@

C 3/
:
C

The terms �@C , and �
@

C are endogenously determined in the equilibrium. Note that the

productivity shocks are absent in the benchmark model. Using this dynamics for the

price, the return process can be written as

3' 9,C =

(
0 9 − � 9,C
@C

+Φ(� 9,C) − � + �@C + ��
@

C

)
︸                                      ︷︷                                      ︸

�'
9,C

3C + (� + �@C )3/
:
C (61)

Let �4,C and �ℎ,C denote the SDF of the experts and the households respectively that

follows
3�9,C

�9,C
= −AC3C − � 9,C3/:C (62)

where, � 9,C is the market price of risk for agent 9. Similar to the stochastic productivity

model, both agents invest in the risk-free asset, and hence the drift of the SDF process is

the same for all agents. The asset pricing conditions for the experts and the households

respectively take the simpler form56

04−�C
@C
+Φ(�C) − � + �@C + ��@,C − AC

� + �@,C
= "C�4,C + (1− "C)�ℎ,C (63)

0ℎ−�C
@C
+Φ(�C) − � ++�@C + ��@,C − AC

� + �@,C
≤ �ℎ,C (64)

56This can be proved using the Martingale argument similar to the model with stochastic productivity. See
Appendix C.4.1 for the proof.
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The equality holds in (64) if the households own some amount of capital (#C < 1). The

optimal investment rate is the same as before and is given in (11). The agents solve

sup
2 9,C ,"9,C ,: 9,C

�C

[∫ ∞

C

5 (2 9,B ,* 9,B)3B
]

(65)

s.t.
3F 9,C

F 9,C
= (AC −

2 9,C

F 9,C
+
@C : 9,C

F 9,C
(�'9,C − AC − (1− "9,C)(� + �

@

C )� 9′,C)3C + �F 9 ,C(� + �
@

C )3/
:
C

where the aggregator 5 (2 9,B ,* 9,B) is given in (6) and the index 9′ denotes the other type

of agent. The households do not issue outside equity and hence "ℎ,C = 1. On the other

hand, the experts issue outside equity but are constrained to hold at least a fraction "

of equity in their balance sheet. Thus, "4,C ∈ [",1]. Moving forward, I denote "4,C as

simply "C for notation brevity. The expressions for �F 9 ,C is the same as in the stochastic

productivity model. Since all agents within the group 9 are identical as before, I solve

for the decentralized economy with wealth share of the experts IC as the sole state

variable. The wealth share is defined as

IC =
,4,C

,4,C +,ℎ,C
=
,4,C

@C C

where ,4,C =
∫

E
F 9,C39 and  C =

∫
E
: 9,C39 +

∫
H
: 9,C39. Moving forward, I denote -4,C to

mean
∫

E
G 9,C39, and similarly for the households.

Proposition 5. The law of motion of the wealth share of experts is given by

3IC

IC
= �IC 3C + �IC 3/:C (66)

where

�IC =
04 − �C
@C
− �4,C
,4,C
+

("C#C
IC
− 1

)
(� + �@,C)(�4,C − (� + �@C )) + (1− "C)(� + �

@

C )(�4,C − �ℎ,C) +
�3
IC
(Ī − IC)

�IC =
("C#C
IC
− 1

)
(� + �@C )

Proof: The law of motion of wealth for the households and the experts are given by
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equation (65). Using the law of large numbers to aggregate the wealth of individual

household and expert, we get

3,ℎ,C

,ℎ,C
=

(
AC −

�ℎ,C

,ℎ,C
−�3 +

1− "C#C
1− IC

(�'
ℎ,C − AC) +

(1− Ī)�3
1− IC

)
3C +

1− "C#C
1− IC

(� + �@C )3/C

3,4,C

,4,C
=

(
AC −

�4,C

,4,C
−�3 +

"C#C
IC

�4,C(� + �@C ) +
Ī�3
IC

)
3C +

"C#C
IC
(� + �@C )3/C

where ,ℎ,C =
∫
9∈�F 9,C39 and ,4,C =

∫
9∈�F 9,C39 denotes the aggregated wealth among

respective group. Similar to the stochastic productivity model, the volatility terms
"C#C
IC
(� + �@C ) and 1−"C#C

1−IC (� + �
@

C ) can be derived using the definitions of IC ,#C and the

market clearing condition �F4 ,CIC(� + �
@

C ) + �Fℎ ,C(1 − IC)(� + �@C ) = (� + �
@

C ). By Ito’s

lemma, the dynamics of the wealth share becomes

3IC

IC
=
3,4,C

,4,C
−
3(@C C)
@C C

+
3〈@C C , @C C〉
(@C C)2

−
3〈@C C ,,4,C〉
(@C C,4,C)

where

3(@C C)
@C C

= (("C�4,C + (1− "C)�ℎ,C)(� + �@C ) −
(04 − �C)
@C

+ AC)3C + (� + �@C )3/C

and the result follows from here after some algebra. �

The expression for the wealth share dynamics is similar to the model with stochas-

tic productivity except that only the price of risk for capital shock matters, and the exit

rate �C disappears from the drift. The solution methodology is also the same as before

where equilibrium policies are determined in the static inner step and the value func-

tion is solved in the outer time step by solving a couple of PDEs. I use an implicit finite

difference method with up-winding to solve the PDEs. The up-winding preserves the

monotonicity of the PDEs and helps achieve convergence. In section C.6.1, I show that

the solution to the PDEs obtained using the finite difference method is the same as the

solution obtained form the neural network method.
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C.4.1 Asset pricing conditions

The expected return that the experts earn from investing in the capital is given by

3AEC = (�'4,C − (1− "C)&ℎ,C)3C + "C(�@,:
C + �)3/

:
C

where &ℎ,C = �ℎ,C(�@C + �). That is, (1 − "C)&ℎ,C is the part of the expected excess return

that is paid by the experts to the outside equity holders, which is netted out. Consider

a trading strategy of investing $1 into the capital at time 0. Denoting EC as the value of

this investment strategy at time C, we have 3EC
EC
= 3AEC , and

3(�4EC)
�4EC

= (−AC + �'4,C − (1− "C)&ℎ,C − "C&4,C)3C + diffusion terms

where &4,C = �4,C(� + �@C ), and �4,C follows the process in (62). Since �4EC is a martingale,

the drift equals to zero, which implies �'4,C − AC = "C&4,C + (1− "C)&ℎ,C It follows similarly

for the households with the difference that since they do not issue outside equity, their

asset pricing condition is �'
ℎ,C − AC = &ℎ,C �

While the quantitative analysis of the benchmark model in main text assumes that

agents have recursive utility and IES=1, I present and solve the model for a broader

range of preference specifications. I consider four different types of utility functions.

Let

5 (2 9,B ,* 9,B) =



� 9 log(2 9,C) − � 9* 9,C if �9 = 1,* 9 = 1

2
1−�9
9,C

1−�9 − � 9* 9,C if �9 = *−1
9
≠ 1

(1− �9)� 9* 9,C

(
log(2 9,C) − 1

1−�9 log
(
(1− �9)* 9,C

))
if �9 ≠ 1,* 9 = 1

1−�9
1− 1

* 9

* 9,C

[(
2 9,C(

(1−�9)*9,C

) 1/(1−�9 )

)1− 1
* 9

− � 9

]
if �9 ≠ 1,* 9 ≠ 1

(67)

I allow for preference heterogeneity in risk aversion and discount rate for generality.

I solve for a Markov equilibrium in the state variable IC ∈ (0,1) for a representative
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household and expert by aggregating all agents within their respective group.

Proposition 6. The optimal consumption policy and price of risk are given by

�̂4,C =



�4 if (log or Recursive (IES=1))

�
−1/�4
4,C (IC@C)

1−�4
�4 if CRRA

�

1−* 9
1−�4
4,C

(IC @C)1−* 9
if Recursive (IES ≠ 1 )

(68)

�̂ℎ,C =



�ℎ if (log or Recursive (IES=1))

�
−1/�ℎ
ℎ,C ((1− IC)@C)

1−�ℎ
�ℎ if CRRA

�

1−* 9
1−�ℎ
ℎ,C

((1−IC)@C)1−* 9
if Recursive (IES ≠ 1 )

(69)

�4,C =


"C#C
IC
(� + �@C ) if log

−��4,C + �IC + �
@

C + �4� if (CRRA or Recursive)
(70)

�ℎ,C =


(1−"C#C)

1−IC (� + �
@

C ) if log

−��
ℎ,C −

IC
1−IC �

I
C + �

@

C + �ℎ� if (CRRA or Recursive)
(71)

Proof: The HJB equation is given by

sup
2, 

5 (2 9,C ,* 9,C) + �[3* 9,C] = 0 (72)

I consider three cases of utility functions separately.

(a) Log utility The value function conjecture takes a logarithmic form

* 9,C = log C + �9,C(IC) = log,9,C + �̃9,C
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and where the second equality follows from IC =
,4,C
@C C

= 1 − ,ℎ,C
@C C

. Also, 5 (� 9,C ,* 9,C) =
� 9log(� 9,C) − � 9* 9,C . The value function derivatives are

%* 9,C

%,9,C
=
3,9,C

,9,C
;

%2* 9,C

%,2
9,C

= −
3〈,9,C ,,9,C〉

,2
9,C

;
%* 9,C

%�̃ℎ,C
= 1;

%2* 9,C

%�̃2
9,C

=
%2 �̃9,C

%�̃9,C%,9,C
= 0

Applying Ito’s lemma and using the HJB, we get

sup
�,�9,C

� 9log� 9,C − �(log,9,C + �̃9,C) + AC −
� 9,C

,9,C
+ �9,C(� + �@C )� 9,C −

1
2
�2
9,C(� + �

@

C )
2 + ��̃C = 0

where �4,C =
"C#C
IC

and �ℎ,C =
1−"C#C

1−IC . Taking the first order conditions, we get the follow-

ing result for log utility.

2̂ 9,C = � 9 (73)

�4,C =
"C#C
IC
(� + �@C ) (74)

�ℎ,C =
1− "C#C

1− IC
(� + �@C ) (75)

(b) CRRA Utility The value function conjecture is

* 9,C = �9,C(IC)
 

1−�9
C

1− �9

where �9,C follows the stochastic differential equation
3�9,C
�9,C
= ��

9,C3C + �
�

9,C3/C whose drift

and volatility needs to be determined in the equilibrium. The HJB equation is derived

directly in terms of the capital :C instead of the wealth share IC . The value function

derivatives are

%* 9,C

%�9,C
=
 

1−�9
C

1− �9
;

%* 9,C

% C
= �9,C 

−�9
C (76)

%2* 9,C

%�2
9,C

= 0;
%2* 9,C

% 2
C

= −�9 �9,C 
−(1+�9)
C ;

%2* 9,C

%�9,C% C
=  

−�9
C
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Applying Ito’s lemma and using HJB, we get

sup
�, 

− �
�9,C 

1−�9
C

1− �9
+
�

1−�9
C

1− �9
+
�9,C 

1−�9
C

1− �9
��
9,C + �9,C 

1−�9
C (Φ(�C) − �) (77)

− �2�9

2
�9,C 

1−�9
C + �9,C 

1−�9
C ���

9,C = 0

At the optimum, the marginal utilities of consumption and wealth become equal.

Rewriting the value function in terms of the wealth and using the mapping @C :C =

,4,C
IC
=

,ℎ,C
1−IC , we get the equilibrium consumption-wealth ratio

�4,C

,4,C
=
(IC@C)

1−�4
�4

�
1
�4

4,C

;
�ℎ,C

,ℎ,C
=
((1− IC)@C)

1−�ℎ
�ℎ

�
1
�ℎ

ℎ,C

(78)

The risk premium of the experts and the households can be derived from the stochastic

discount factor which is given by

�9,C = �9,04
−�9 C

(
� 9,C

� 9,0

)−�9
This gives a relationship between the volatility of SDF and consumption: ��

9,C =−�9�29,C .
The consumption-capital ratio for the households and the experts is given by �ℎ,C

 C
=

((1−IC)@C)1/�ℎ
�

1/�ℎ
ℎ,C

and �4,C
 C
=
(IC @C)1/�4

�
1/�4
4,C

. Combining this with the differential equation for SDF

3�9,C

�9,C
= −AC3C − � 9,C3/C

we get

�4,C = �4�
2
4,C = −�

�
4,C + �

I
C + �

@

C + �4�; �ℎ,C = �ℎ�
2
ℎ,C = −�

�

ℎ,C −
IC

1− IC
�IC + �

@

C + �ℎ� (79)
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Plugging in the optimal consumption-wealth ratio from (78) into HJB equation (77),

we get the expressions for ��
9,C

��4,C = �4 −
(IC@C)

1−�4
�4

�
1/�4
4,C

− (1− �4)
(
Φ(�C) − � −

�4
2
�2 + ��4,C�

)
(80)

��
ℎ,C = �4 −

((1− IC)@C)
1−�ℎ
�ℎ

�
1/�ℎ
ℎ,C

− (1− �ℎ)
(
Φ(�C) − � −

�ℎ
2
�2 + ��

ℎ,C�
)

(81)

(c) Recursive Utility (IES=1) The value function conjecture is the same as that of

CRRA utility, and 5 (� 9,C* 9,C) = (1 − �9)� 9* 9,C

(
log� 9,C − 1

1−�9 log
(
(1 − �9)* 9,C

) )
. Plugging

in the conjecture for value function in HJB equation (32) and applying Ito’s lemma57,

we get

sup
�, 

��9,C 
1−�9
C [log

� 9,C

,9,C
− 1

1− �9
log�9,C + log(@CIC)] + �9,C

 
1−�9
C

1− �9
��
9,C (82)

+ �9,C 
1−�9
C (Φ(�C) − �) − �9,C 

1−�9
C

1
2
�9�

2 + �9,C 
1−�9
C ���

9,C = 0

As before, at the optimum, the marginal utilities of the wealth and the consumption

become equal. Using the value function expression in terms of wealth, we have

%* 9,C

%,9,C
=

% 5

%� 9,C

�̃9,C,
−�9
9,C = (1− �9)� 9

* 9,C

� 9,C
=⇒

� 9,C

,9,C
= � 9

The stochastic discount factor for recursive utility is given by

�9,C = exp
(∫ C

0

% 5 (� 9,B ,* 9,B)
%*

3B

)
%* 9,C

%,9,C

57The value function derivatives are the same as in the CRRA case given by (76).
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Writing the value function conjecture in terms of the wealth instead of the capital, we

have

* 9,C = �̃9,C
,

1−�9
9,C

1− �9
; 5 (� 9,C ,* 9,C) = (1− �9)� 9* 9,C

(
log� 9 −

1
1− �9

�̃9,C
)

where �̃9,C =
�9,C

(@CIC)1−�9
. The SDF then becomes

�9,C = (1− �9)exp
(∫ C

0

[
� 9

(
(1− �9)log� 9,B − log

(
(1− �9)* 9,B

)
− 1

]
3B

)
* 9,C

,9,C

This implies that �(�9,C) = �

(
*9,C

,9,C

)
. Computing the R.H.S and using

3�9,C

�9,C
= −AC3C − � 9,C3/C

we get the desired result. Plugging in the consumption-wealth ratio and the market

price of risk into the HJB equation (82), we obtain the expressions for ��
9,C

��4,C = (�4 − 1)
(
�4 log�4 + log(@CIC)

)
+ �4 log�4,C − (1− �4)(Φ(�C) − � −

�4
2
�2 + ���4,C) (83)

��
ℎ,C = (�ℎ − 1)

(
�ℎ log�ℎ + log(@C(1− IC))

)
+ �ℎlog�ℎ,C − (1− �ℎ)(Φ(�C) − � −

�ℎ
2
�2 + ���

ℎ,C)

(84)

(d) Recursive Utility (IES different from unity) The optimization problem is

sup
� 9,C .�9,C ,�C

5 (� 9,C ,* 9,C) + �[3* 9,C] = 0

where

5 (2 9,C ,* 9,C) =
1− �9
1− 1

* 9

* 9,C

[(
� 9,C(

(1− �9)* 9,C
)1/(1−�9)

)1− 1
* 9

− � 9

]
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where * 9 denotes the IES parameter. The conjecture for the value function is

* 9,C = �9,C(IC)
 

1−�9
C

1− �9

where �9,C follows the stochastic differential equation
3�9,C
�9,C
= ��

9,C3C + �
�

9,C3/C whose drift

and volatility needs to be determined in the equilibrium.58

As before, the HJB equation is derived directly in terms of the capital  C instead of

the wealth share IC . Applying Ito’s lemma and using the HJB, we get

sup
2, 

1
1− 1

* 9

(
�

1− 1
* 9

9,C

�

1− 1
* 9

1−�9
9,C  

1− 1
* 9

C

− � 9

)
�9,C 

1−�9
C +

�9,C 
1−�9
C

1− � ��
9,C + �9,C 

1−�9
C (Φ(�C) − �) (85)

− �2�9

2
�9,C 

1−�9
C + �9,C 

1−�9
C ���

9,C = 0

At the optimum, the marginal utilities of the consumption and the wealth become

equal. Rewriting the value function in terms of the wealth and using the mapping

@C C =
,4,C
IC
=

,ℎ,C
1−IC , we have

% 54,C
%�4,C

= �
− 1
*4

4,C �

1
*4 −�4
1−�4
4,C (IC@C)�9−

1
*4

% 5ℎ,C

%�ℎ,C
= �

− 1
*ℎ

ℎ,C �

1
*ℎ
−�ℎ

1−�ℎ
ℎ,C ((1− IC)@C)�9−

1
*ℎ

%*4,C

%,4,C
=

�4,C

(IC@C)1−�4
,

1−�4
4,C

%*ℎ,C

%,ℎ,C
=

�ℎ,C

((1− IC)@C)1−�ℎ
,

1−�ℎ
ℎ,C

Equating the marginal values, we get the respective optimal consumption-wealth ra-

58Since the value function conjecture is the same as in CRRA case, the value function derivatives are given by
(76).
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tios

�4,C

,4,C
=

�
1−*4
1−�4
4,C

(IC@C)1−* 4
;

�ℎ,C

,ℎ,C
=

�

1−*ℎ
1−�ℎ
ℎ,C

((1− IC)@C)1−* ℎ
(86)

The stochastic discount factor for recursive utility is given by

�9,C = exp
(∫ C

0

% 5 (� 9,B ,* 9,B)3B
%*

)
%* 9,C

%F 9,C

Writing the value function conjecture in terms of the wealth instead of the capital, we

have

* 9,C = �̃9,C
,

1−�9
9,C

1− �9
; 5 (� 9,C ,* 9,C) =

�̃9,C,
1−�9
9,C

1− 1
* 9

[(
� 9,C

,9,C

)1− 1
* 9

�̃

1− 1
* 9

�9−1

9,C − � 9

]
where �̃9,C =

�9,C

(@CIC)1−�9
. Plugging in the above expression in the stochastic discount factor,

we notice that �(�9,C) = �
(*9,C

,9,C

)
. Computing the R.H.S and using

3�9,C

�9,C
= −A 5 3C − � 9,C3/C

we get the following result.

�4,C = −��4,C + �
I
C + �

@

C + �4� (87)

�ℎ,C = −��ℎ,C −
IC

1− IC
�IC + �

@

C + �ℎ� (88)

Substituting the consumption-wealth ratio into the HJB equation (85), we the expres-

sion for ��
9,C

��4,C =
(�4 − 1)
1− 1

* 4

(
(@CIC)* 4−1�

1−*4
1−�4
4,C − �4

)
− (1− �4)(Φ(�C) − � −

�4
2
�2 + ���4,C) (89)

��
ℎ,C =
(�ℎ − 1)
1− 1

* ℎ

(
(@C(1− IC))* ℎ−1�

1−*ℎ
1−�ℎ
ℎ,C − �ℎ

)
− (1− �ℎ)(Φ(�C) − � −

�ℎ
2
�2 + ���

ℎ,C)

This proves the proposition. �
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C.5 Numerical solution method

C.5.1 Model solution: Log utility

I rely on the solution technique from BS2016 and Hansen, Khorrami and Tourre (2018)

that solves the partial differential equations using an up-winding finite difference

scheme. The method involves a static inner loop that solves for the equilibrium quan-

tities {#C , (�@,C + �), @C}, and an outer loop that updates the value function from �9,C+ΔC

to �9,C using a finite difference method, similar to the model with stochastic productiv-

ity.

Static step: To solve for the quantities in inner loop, three equations are required.

The first equation is given by subtracting the portfolio choices of the households and

the experts. That is, we have

(�4,C − �ℎ,C)(�@C + �)
2 = �'4,C − (�'ℎ,C)

Plugging in the expressions for �'4,C ,�
'
ℎ,C from the return process (61), and using �4,C =

"C#C
IC

as well as from the capital market clearing condition �ℎ,C =
1−"C#C

1−IC , we get

"#C − IC
IC(1− IC)

(�@C + �)
2 =

04 − 0ℎ
@C

(90)

Note that " is used in place of "C because of similar reasoning as in the model of

stochastic productivity. When the wealth share IC is low, the experts issue maximum

equity possible to the households since their expected rate of return is much higher

than that of households. The second equation comes from the goods market clearing

condition

(IC 2̂4,C + (1− IC)2̂ℎ,C)@C = #C(04 − �C) + (1−#C)(0ℎ − �C) (91)

where �C =
@C−1
� . For the third equation, apply Ito’s lemma to @(IC) and match the drift

and the volatility terms to get �@C =
%@C
%IC

1
@ �

I
C . Combining this with the volatility of wealth
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share, we get

�
@

C + � =
�

1− %@C
%IC

1
@ (

"C#C
IC
− 1)

(92)

Equations (90), (91), and (92) are solved using the Newton-Raphson method59 yielding

{#C , (�@,C + �), @C}. Similar to Brunnermeier and Sannikov (2016), there are three regions

in the state space. In the first region, the risk premium of the households is lower than

that of the experts and hence the experts issue maximum outside equity (i.e., "C = "C).

In the second region, the experts hold all capital (#C = 1) but their risk premium is

still larger than that of households and hence "C = ". In the third region, perfect risk

sharing is achieved between the experts and households by setting "C = IC . In the case

of log utility, the static step is enough to compute the equilibrium policies since the

consumption-wealth share is equal to the discount rate and the capital share is not

dependent on �9,C .

C.5.2 Model solution: CRRA and Recursive utility

The portfolio choice in the case of CRRA and recursive utility includes the hedging

demand that needs to be taken into account. From equations (63) and (64), we get

04 − 0ℎ
@C(� + �@C )

≥ "(�4,C − �ℎ,C)

with equality if #C = 1. Plugging in the expressions for �4,C and �ℎ,C from proposition

(6), we have

04 − 0ℎ
@C

= "

(
1
�ℎ,C

%�ℎ,C

%IC
− 1
�4,C

%�4,C
%IC
+ 1
IC(1− IC)

)
("#C − IC)(� + �@C )

2

04 − 0ℎ
@C

= "

(
��
ℎ,C − �

�
4,C +

�IC
1− IC

)
(� + �@C )

59BS2016 and Hansen, Khorrami and Tourre (2018) provide details of the algorithm. The state space is seg-
mented into the crisis region and the normal region. The static step is solved for iteratively until the system enters
the crisis region in which case the capital share # is set to 1 and the remaining quantities (@C ,�

@

C
) are solved for

using equations (91) and (92).
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where the second expression comes from using the dynamics of the wealth share

(66).60 The goods market clearing condition (91) and return volatility (92) remain the

same. Similar to the case of log utility, the Newton-Raphson method is used to solve

for the {#C , @C , (� + �@C )}. Given these equilibrium functions, �9,C needs to be solved for,

which is done in the dynamic time step.

Time step: Applying Ito’s lemma to �9,C(IC), matching the drift terms, and augment-

ing the resulting coupled PDEs with a time step (falst-transient method), we get

��
ℎ,C �ℎ,C =

%�ℎ,C

%IC
�IC +

1
2
%2�ℎ,C

%I2
C

(�IC )2 (93)

��4,C �4,C =
%�4,C
%IC

�IC +
1
2
%2�4,C

%I2
C

(�IC )2 (94)

The coefficients �IC and �IC can be computed from the equilibrium quantities in the

static step and ��
9,C is computed from the equations in (83). The PDEs are solved using

an implicit method with an up-winding scheme explained in the next part.

C.5.3 Up-winding scheme

The PDEs (93) are solved by considering artificial time-derivatives. To be specific, the

modified system

0 =
%�ℎ,C

%C
− ��

ℎ,C �ℎ,C +
%�ℎ,C

%IC
�IC +

1
2
%2�ℎ,C

%I2
C

(�IC )2 (95)

0 =
%�4,C
%C
− ��4,C �4,C +

%�4,C
%IC

�IC +
1
2
%2�4,C

%I2
C

(�IC )2 (96)

60Note that by Ito’s lemma, we have �9,C =
1
�9,C

%�9,C
%IC

�I
C
= 1
�9,C

%�9,C
%IC
(�4,C − 1)(� + �@

C
)2
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is solved backwards in time with the corresponding terminal conditions (�ℎ,) , �4,)).
Consider a general quasi-linear PDE of the form

�

(
I, 6,

%6

%I

)
+ CA

[
�

(
I, 6,

%6

%I

)
%26

%I2 �

(
I, 6,

%6

%I

)′]
+
%6

%C
= 0

Consider a two-dimensional grid of size #I and #C with step sizes Δ8 and Δ9 respec-

tively where {8}#I

1 ,{ 9}#C1 denote the dimensions for space and time respectively. The

function 6(IC , C) evaluated at (8, 9) is denoted as 68,9 . The derivatives of the function are

discretized as

%̂68,9

%̂I
= (�I9 )+

68+1,9 − 68,9
Δ8

+ (�I9 )−
68,9 − 68−1,9

Δ8

%̂268,9

%̂I2
=
68+1,9 − 268,9 + 68−1,9

Δ2
8

%̂68,9

%̂C
=
68,9+1 − 68,9

Δ9

where (�I9 )+ =


�IC if �IC > 0

0 if otherwise
(�I9 )− =


�IC if �IC < 0

0 if otherwise
Discretizing the derivatives at 9 + 1 and applying it to the PDE, we get

68,9+1 = 68,9 +Δ9
{
�

(
I, 68,9+1,

%̂68,9+1

%̂I

)
+ CA

[
�

(
I, 68,9+1,

%̂68,9+1

%̂I

)
%̂268,9+1

%̂I2
�

(
I, 68,9+1,

%̂68,9+1

%̂I

)′]}
Solving for 68,9+1 requires solving a linear system of equations which can be done us-

ing a standard procedure such as the Richardson method. The up-winding scheme en-

sures monotonicity of the numerical scheme (see D’Avernas and Vandeweyer (2019)).

Since the method is implicit, a large time step can be set which considerably reduces

the computation time.
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C.5.4 Equilibrium policies

The equilibrium plots for the benchmark model is given in Figure (10).

Figure 10: Equilibrium values as functions of state variable IC . The recursive utility
plots have IES equal to 1. Log utility has RA=1 by construction.

C.5.5 Numerical simulation

The state variable in the model is IC whose law of motion is governed by the equation

(66). Once the mapping between IC and (�IC , �
I
C ) are determined numerically from the

previous section, we can simulate IC using an Euler-Maruyama scheme. Specifically,
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the task is to simulate

3IC = �IC 3C + �IC 3/C

where the shock 3/C is the standard Brownian motion. The law of motion is discretized

as

IC+ΔC = IC + �I(IC)ΔC + �IC (IC) ∗
√
ΔC/

where / ∼ #(0,1). The steps are as follows

1. Set I0 to an arbitrary initial value, say 0.5.

2. Simulate / from the standard normal distribution and compute IC+ΔC using the

discretized equation for Δ = 1/12. The mapping between IC and (�IC ,�IC ) is in a

grid since it is solved for numerically and hence I use a spline interpolation to

obtain the intermediate values.

3. Repeat the procedure for I1, I2, ... and obtain {IC}60,000
1 . That is, the simulation is

done for 5000 years at monthly frequency.

The first 1000 years are eliminated so as to reduce the dependency on the initial con-

dition. I experiment with different initial values to make sure that the obtained distri-

bution is indeed stationary. The procedure is repeated for 1000 times and Figure (11)

plots the resulting distributions.
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Figure 11: Stationary distribution of wealth share.

Figure 12: Plots (a), (b), (c), and (d) represent benchmark model with risk aversion
parameter set to 1, 5, 12, and 20 respectively. The vertical blue line and the vertical
dotted line represent the endogenous crisis boundary I∗ and the steady state Î of the
wealth share respectively.

C.5.6 Calibration of benchmark model

Table (5) presents the data moments that the model aims to match with the methodol-

ogy to compute them. The benchmark model delivers an unconditional average GDP

growth rate of around 2.3% and an investment rate of 7%. An important measure of

model success is its ability to capture the observed non-linearity in the data. The GDP

growth rate conditional on being in a crisis is around -8%. The empirical annualized

GDP growth rate during the third quarter of 2008 was -8.2%. In this respect, the model

captures the non-linearity quite well. However, the drop in investment rate implied

by the model during the crisis is not sufficient to reconcile with the data. The private

investment rate fell by 8% during the third quarter of 2008, whereas the model implied

investment rate conditional on being in the crisis is 5.6%. Note that even though the
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output of experts and households individually moves in sync with the capital due to

the assumption of AK technology, the aggregate output depends on the aggregate divi-

dend, which is a function of the capital share. During the crisis period, less productive

households hold capital, and hence the aggregate dividend drops to a large extent,

and this causes the output to drop a lot as well. On the other hand, the investment

rate is determined by capital prices alone. A drop in the capital price during the cri-

sis period is not large enough to generate the observed drop in the investment rate.61

The volatility of investment rate implied by the model is close to zero. Overall, the

model captures non-linearity in output growth but misses non-linearity in the mean

and volatility of investment rates. This result is comparable to HK2019, which has a

realistic consumption volatility but an excessively low investment volatility. This calls

for future work to match both output and investment dynamics. The mean leverage

of the expert sector implied by the model with unitary risk aversion is 3.5, comparable

to the empirical leverage of 3.77.62 The model also features counter-cyclical leverage.

Even though the experts fire sell the assets to the households in periods of distress,

the price of capital also drops, which depresses the experts’ equity. Since the experts

operate with leverage in equilibrium, the drop in expert equity is more than the drop

in assets, which results in rising leverage. Table (11) shows that the correlation be-

tween the shock and the leverage ranges from -19% to -26% for different risk aversion

levels. This matches the empirical correlation of -18% quite well. Overall, for lower

risk aversion levels, the model seems to do well in matching the leverage patterns.

Lastly, the model does not generate an excessive asset return volatility (Shiller (1981)).

The unconditional return volatility is more or less the same as the exogenous capital

volatility of 6%, even though the conditional return volatility is large. This is because

the endogenous risk �
@

C becomes zero in the normal regime. The conditional volatility,

albeit high, is not large enough to make the unconditional one match the data.

61The result is not much quantitatively different if one assumes a quadratic functional form instead of logarith-
mic for the capital adjustment costs Φ(·).

62This number is taken from HK2019.
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Table 9: Calibration: Benchmark model

Parameter
Benchmark

Model
Model

B1
Model

B2 Target

Technology

Volatility (�) 0.06 0.06 0.06 Volatility of risk premium
Discount rate (experts) (�4 ) 0.06 0.05 0.05 Literature
Discount rate (households) (�ℎ ) 0.04 0.05 0.05 Literature
Depreciation rate (�) 0.02 0.1 0.1 GDP growth
Investment cost (�) 5 5 5 Investment-capital ratio
Expert Productivity (04 ) 0.11 0.2 0.15 Conditional risk premium
Household Productivity (0ℎ ) 0.03 0.02 -0.03 Consumption-output ratio
Correlation of shocks (!) - 0.5 - Data

Preference Utility parameters (�) 2 5 5 Unconditional risk premium

Demographics Mean expert mass (Ī) 0.1 0.1 0.1 Literature
Turnover (�3) 0.03 0.001 0.001 Literature

Expert productivity Mean reversion rate (�) - 0.01 - Duration of crisis
Variance (�) - 4.2 - Data

Friction Equity retention (") 0.5 0.95 0.95 Literature

Note: Calibrated parameters for the benchmark models along with the target. The benchmark
model does not feature stochastic productivity or exit rate. The model B1 considers stochastic
productivity but without exit. The model B2 has constant productivity but the experts have a
state-dependent exit rate.

C.5.7 Other trade-offs in the benhmark model

One key quantity that governs the time spent in the crisis region is the drift of the

wealth share. The parameter �3 controls the death rate of experts which is necessary to

ensure model stationarity. As the death rate increases, all else equal, the system stays

in the crisis region longer. A similar effect is observed when the mean proportion of

experts I is decreased. Figure (13) presents the static comparison of the drift of the

wealth share for different values of �3 and I. A higher death rate pushes the system

into the crisis region by making the drift of wealth share more negative in the normal

regime. However, there is only a minimal effect on the drift once the system enters

the crisis region. The second panel varies the mean population share of experts by

keeping the death rate fixed. As the population share decreases, the drift becomes

more negative making the crisis more likely. Once the system enters the crisis region,

the drift becomes less positive pushing the system back into the normal regime at a
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Table 10: Model success summary

Quantity of interest Success level Comments

Macroeconomic GDP/Output growth High X
Investment rate Low Low variation

and not enough
drop in crisis

Experts Leverage High X
Cyclicality of leverage High X

Crisis

Probability of crisis Moderate Matching prob.
of crisis atten-
uates crisis dy-
namics

Duration of crisis Low Matching dura-
tion attenuates
crisis dynamics

Asset price

Conditional risk premium High X
Unconditional risk pre-
mium

Low Matching un-
conditional
risk premium
attenuates prob.
of crisis

Std. of risk premium Moderate -
Conditional volatility High X
Unconditional volatility Low Shiller puzzle

Note: The model implied moments and probability of crisis is computed by simulating the
model at monthly freqnency for 5000 years. All values are annualized.

slower rate. Both of these effects work towards increasing the frequency of crisis.

Figure 13: Left panel shows the drift of wealth share for two different values of death
rate �3 for I fixed at 0.1. The second panel shows the drift of wealth share for two
different values of mean expert population for �3 fixed at 0.02. The risk aversion is set
to 2 for both the plots. 89



Figure (14) shows the probability of crisis for several values of �3 and I for the

recursive utility model with IES=1 and risk aversion equal to 2. To obtain a 7% proba-

bility of crisis, the population share of experts have to be less than 10%, with a death

rate of 3%. Since the discount rate assumed in the model is inclusive of death rate,

a 3% death rate means that the households do not discount at all. The second panel

of Figure (14) reveals that changing the OLG parameters doesn’t affect unconditional

risk premium much. While it is possible to achieve a realistic probability of crisis and

unconditional risk premium simultaneously, this comes at the cost of extremely high

death risk, and more importantly, it still does not generate persistent recessions. This

is because the duration of the crisis is unaffected by a high death risk and thus leads

to a quick recovery.

Figure 14: Left panel shows the drift of wealth share for two different values of exit rate
�3 for I fixed at 0.1. The right panel shows the drift of wealth share for two different
values of mean expert population for �3 fixed at 0.02. Both plots are from recursive
utility model with risk aversion equal 2 and IES=1.
Tightening financial constraint: One of the key assumptions of the model is the inability

of experts to fully issue outside equity. The parameter " governs how much equity the

experts are forced to retain and hence it is of interest to study the model by varying this

parameter. As the financial constraint tightens, the probability of crisis increases. The

left panel of Figure (15) plots the risk premium of experts for three different values of

the skin-in-the-game constraint. As the constraint increases, the crisis boundary shifts

to the right but the unconditional risk premium is lower. This effect can be seen in the

simulation result on the right panel of Figure (15). While a higher value of " leads to a
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higher probability of the crisis, the conditional risk premium drops drastically leading

to only a marginal increase in the unconditional premium.

Figure 15: Left panel: Static comparison of the risk premium by changing the skin-in-
the game constraint for the baseline model with RA=1 and IES=1. Right panel: Trade
off between the conditional risk premium and the probability of crisis by varying the
skin-in-the-game constraint. The parameter " increases from left to right. Left (dashed
line) and right (blue line) axes correspond to the unconditional and the conditional risk
premium respectively.

C.6 Deep learning methodology

C.6.1 One-dimensional model

I first present the solution to the benchmark model using deep learning method and

then demonstrate how and why it is easy to scale to higher dimensions by presenting

the solution to richer model with two state variables. I consider the case of recursive

utility with IES=1 and RA=2 for demonstration.63 The PDE that needs to be solved is

given in (95). Construct a neural network �̂(I, C | Θ) and define the PDE residual to be

5 :=
%�̂

%C
+ %�̂

%I
�I + 1

2
%2 �̂

%I2 (�
I)2 − �� �̂

The network architecture is given in Figure (17) with the hyperparameters in Table

(8).64 Figure (16) plots the full grid and the training sample. The inner static loop uses

63The deep learning algorithm works for any type of utility function. For larger risk aversion values, it takes
longer to achieve convergence due to the highly non-linear value function near the boundaries.

64The algorithm works even for 2 hidden layers with 30 neurons each instead of 4 hidden layers but may be

91



a grid size of 1000 points in space dimension while the neural network only uses 300

points for training. In the case of a single space dimensional model, sampling one-

third of the grid points is enough to find the right solution. In higher dimensions,

the proportion of grid points required as training sample can be set much lower than

one-third.

Figure 16: Grid used in numerical procedure: 1D model.

Figure 17: Network architecture: benchmark model.

I illustrate the simplicity of coding the neural network solution using code snippets

that uses Tensorflow library. The first step is to construct a neural network �̂ using the

space and time dimensions as training data, and weights and biases as parameters ini-

prone to instabilities for some extreme parameter values such as setting " = 0.1. It is recommended to have four
layers to capture the non-linearity well.
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tialized arbitrarily.65 This is illustrated in the code snippet (1) and it corresponds to the

left most feed-forward neural network (## : �̂(I, C | Θ)) in Figure (17). The next step

is to construct the regularizers using PDE residual as given in code snippet (2). This

forms the PDE network in Figure (17). The PDE coefficients (advection, diffusion, and

linear terms) are taken as given and form part of the training sample. The automatic

differentiation in Tensorflow (C 5 .6A0384=CB) enables fast computation of derivatives in

the regularizers which guides the parameterized neural network �̂ towards the right

solution even when the training sample is small. In addition to the PDE bounding

loss, one can easily set up the boundary loss and crisis region loss in a similar fashion.
1 def J(z,t):
2 J = neural_net(tf.concat([z,t],1),weights,biases)
3 return J
4

Listing 1: Approximating � using a neural network: 1D model

1 def f(z,t):
2 J = J(z,t)
3 J_t = tf.gradients(J,t)[0]
4 J_z = tf.gradients(J,z)[0]
5 J_zz = tf.gradients(J_z,z)[0]
6 f = J_t + advection * J_z + diffusion * J_zz - linearTerm * J
7 return f

Listing 2: Constructing regularizer: 1D model

Since the analytical solution to the benchmark model is not available, I compare

the neural network solution with the those obtained from the finite difference method

explained in Appendix (C.5.3). Figure (18) shows the comparison. They are not only

65I use Xavier initialization to avoid the vanishing gradient problem.
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qualitatively similar, they are quantitatively the same up to the order of 1e-4.

Figure 18: Comparison of equilibrium quantities using finite difference and neural
network in one-dimensional benchmark model.

C.6.2 Two-dimensional model

The PDE that needs to be solved in the two-dimensional model is given in (52). As in

the case of one-dimensional model, construct the neural network �̂(I, 0, C | Θ) with the

PDE residual taking the form

5 :=
%�̂

%C
+ %�̂

%I
�I + %�̂

%I
�0 + 1

2
%2 �̂

%I2

(
(�I,:)2 + (�I,0)2 + 2!�I,:�I,0

)
+ 1

2
%2 �̂

%02
0

�2
0

+ %2 �̂

%IC%0

(
I�I,:�0! + �0�I,0 ) − �� �̂

The network architecture and hyperparameters are given in Figure (8) and (8) re-

spectively. The grid size becomes larger compared to the one-dimensional model but

the chosen training sample size is 3000 which is much smaller than the full grid size of

30,000 as is illustrated in Figure (19). To appreciate the simplicity involved in scaling
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to higher dimensions, I present the code snippets for the 2D model in (3) and (4). Sim-

ilar to the 1D model, the neural network � is parameterized the same way except that

the network takes three inputs- two space dimensions (I, 0) and one time dimension

(C). This corresponds to the leftmost feed-forward neural network in Figure (8) where

three neurons enter the network instead of two as in Figure (17). The construction

of regularizer as shown in code snippet (4) simply adds new derivative terms to the

PDE network taking as given the coefficients (advection, diffusion, linear, and cross

terms). Moving from one to two dimensions in an implicit finite difference method

is not trivial since one has to set up the system of linear equations to be solved nu-

merically. In even higher dimensions, as demonstrated in Gopalakrishna (2021), the

PDE network simply adds further derivative terms. This is easier to do in comparison

with setting up the system of equations. In dimensions more than two with corre-

lated state variables, preserving monotonicity of the numerical schemes adds further

complications, which the neural network method sidesteps. The literature has used

advanced C++ tools like Paradiso (see Hansen, Khorrami and Tourre (2018)) which

requires much more effort than simply augmenting the PDE network. Since most of

the heavy lifting is done by the automatic differentiation in the regularizers, learning

in high dimensions is accomplished effectively through a few lines of coding.
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Figure 19: Grid used in numerical procedure: 2D model. The full grid contains 30,000
points and the training sample contains 3000 points.

1 def J(z,a,t):
2 J = neural_net(tf.concat([z,a,t],1),weights,biases)
3 return J
4

Listing 3: Approximating � using a neural network: 2D model

1 def f(z,a,t):
2 J = J(z,a,t)
3 J_t = tf.gradients(J,t)[0]
4 J_z = tf.gradients(J,z)[0]
5 J_a = tf.gradients(J,a)[0]
6 J_zz = tf.gradients(J_z,z)[0]
7 J_aa = tf.gradients(J_a,a)[0]
8 J_az = tf.gradients(J_a,z)[0]
9 f = J_t + advection_z * J_z + advection_a * J_a + diffusion_z * J_zz +

10 diffusion_a * J_aa + crossTerm * J_az - linearTerm * J
11 return f

Listing 4: Constructing regularizer: 2D model
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