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This Project

v

We focus on solving macroeconomic models not estimating statistical models.

> We study continuous time DSGE models with the following features:
1. A short-term risk free asset and a set of long-term risky assets,

2. A large collection of price-taking agents who face idiosyncratic shocks/constraints

> We use deep learning to obtain a global solution.

> We are unaware of other global solution techniques for these models:

1. Traditional techniques: are intractable unless the agent distribution can be
approximated by low dimensional moments.
(e.g. Krusell and Smith, 1998, Fernindez-Villaverde, Hurtado, and Nuno, 2023, Kubler and
Scheidegger, 2019)

2. Other deep learning techniques: have struggled to solve models with wealth
distribution, long-lived assets and complicated portfolio choice.
(e.g. Duarte, 2018, Gopalakrishna, 2021, Sauzet, 2021, Gu et al., 2023, Ferndndez-Villaverde,
Hurtado, and Nuno, 2023, Huang, 2023, Azinovic and Zemlizka, 2023)
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Three blocks

General equilibrium for this economy can
be characterized by three blocks

1. Optimization block: High but finite
dimensional PDE capturing agents
optimization over consumption,
portfolio holdings taking prices as <
given

3. Equilibrium

saijod usnI8

2. Distribution block: High but finite
dimensional law of motion of agent'’s
wealth

2. Distribution

3. Equilibrium block: Ensures that price
processes are consistent with
equilibrium

This is the first paper that can solve models with all three non-trivial blocks.
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Roadmap

Illustrative model
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General Equilibrium Endowment Asset Pricing Model

» Time is continuous with infinite horizon.
> Perishable consumption good created by a Lucas tree that produces output:

dye = py(ye)dt + oy (ye)dWe

where W; is a standard Brownian motion.
> Populated by price-taking households with flow utility u(c; ).

> Competitive markets for goods, risk-free bonds in net zero supply (with price r¢),
and equity shares in Lucas tree (with price g¢). The price process follows

dq: = piqidt + of qrdW,
> Financial frictions restrict the agents’ choice by W(aj;, bi¢, ki) = 0
> a;: is agent wealth, b; ; is agent bond holdings.
> E.g. borrowing constraint is a; y — x; = 0.
> E.g. equity non-participation constraint is a; ; — b; ; = 0.
> Typically easier to model as penalty ¥(aj ¢, bi,t, ki) = [V (ai,r, b e, 57)]2.
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Optimization and Equilibrium
Given the belief about price processes 7, §, agent i solves

c,b

o0
max {IEO [J e "(u(cit) + ¥(ais, b, H;))dt]}
0
(1)
s.t. daj; = bifi —ci: + (M? + ?) (ai,e — bie) + (aie — biye)oddW;
t
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Optimization and Equilibrium
Given the belief about price processes 7, §, agent i solves

©
max {Eo [J e "(u(cit) + ¥(ais, b, H;))dt]}
c,b 0
(1)
s.t. da,-7t = b[,ti’\t — Ci,t + (M? + ?) (a,-,t — bi’t) + (a,-,t — bi’t)O'?th
t

Equilibrium:

1. Individual i’s consumption decision ¢/ and bond holding b} solves problem (1),
given their believed price process (7, §);

2. Equilibrium prices (q:, r:) solves market clearing conditions: (i) goods market
> Gt =y, (i) stock market > (a;,: — bi,t) = g and (iii) bond market

Zi b,‘yt = 0

3. Agent beliefs about the price process are consistent with the optimal behaviour of
other agents in the sense that (7, §) = (r, q).
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Recursive Characterization of Equilibrium

Individual state = a;, Aggregate states = (y, {a;}j+i) = (*).

Given belief about evolution of other agents, (fi5(-),55(-)), agent i solves:

Vi Vi
pViCare) = max {u(a) + ¥(ar, k) + e () + Dy
1%V , 102V, , %V
= (bi, )+ = 2 (bi, - .
+2 U:( )+2 0 +aa’ay0: Uy+; ‘)ajuj
1 %V, PV oV
= Ga; (1)T (- ——0 2 (bi,*)Ga (-
+ #izj;#iﬁaj(?aj/af()af()+§(a("ya 0y+zoa(aja’( 33,()
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Recursive Characterization of Equilibrium

Individual state = a;, Aggregate states = (y, {a;};»i) = (-).

Given belief about evolution of other agents, (fi5(-),55(-)), agent i solves:

Vi Vi
pVi(ai,) = rga?( {U(C[) +(ai, si, ki) + ga,- wa; (ciy by, +) %y Ly
10%V; , 10%V; , &%V,
3w b )+ 5ot gy ou b oy *; 2a; 2t
1 >V, . >V, Vi .
ta _~ Oajoay Uaf(')a"/"(.) N Z (f?aj(?yaaj(‘)gy * Z (7aié‘ajaa’(bi’ )83()
JFI #i JF#i J#i

FOCs after defining & := aa , and applying Ito's lemma to &; are

& = u'(ci) &i(r —r7) = o¢,0% + (0vi/0bi)
In equilibrium, beliefs are consistent: (fia, (-), 52,(-)) = (k5 (-);05())
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Imposing Equilibrium

We use aggregate state (y, {ni}1<i<s), where 1j; := a;/A is agent i's wealth share.

Once equilibrium is imposed, we know &; is a function of (y, {ni}1<i</)

...s0 we can write u¢, and o, in terms of derivatives of (y, {ni}i<i<s).

We group the resulting equilibrium equations into three blocks.
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Block-1

1. Optimization

> Given prices (r, rq, q, tiq, 0q),

Consumption: &=1d(c)
Euler equations: p&i = r& + Z 65[ Hjn + 65[
1 I !
8 5 + Z 02 5
. 0&; 0¢;
Asset pricing: i(r—ry) = gjn + o
p g € ( ‘7) (; anj Jsm ay )/>

Gopalakrishna, Gu and Payne

agent optimization implies:

6{,
2 (3 / 9j,n0j'n
Tjino ﬁ?ﬁf’, for all i
oi
Uq+61£;
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Block-2

2. Distribution

Given the prices (r, rq, q, g, 0q) and (c, &, b), the law of motion of wealth shares is

given as

Gopalakrishna, Gu and Payne

dnj,t = Mj,n,tdt + Uj,n,tth

yt bj,¢ (Ul)il(fj,t) bit , q\2
ot ="—+ —(rt—1rqt) — ——— + —(0
Hj,m,e g a. (re a.t) P 3 (of)

b',t
Ojmt = ;j (ajc — bje)of —of| = _7aj-,t0?
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Block-3

3. Equilibrium

In equilibrium, the following market clearing conditions must hold:

Nbi=0 Zn,:l Zc,:y

i
Clearing conditions pin down the prices but LOM of price, g, is implicit.

We impose consistency conditions on the LOM of the price g to close the model:

16(]2
Zanﬂj,n+7 2257]77 Ojm J,”]+Za 0y Gjm y+282 y
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Roadmap

Comparison to other models
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Comparison to other models

Models Blocks Method
1 2 3

Representative Agent

(5 1a Lucas, 1978) ‘ simple ‘ NA simple | Finite difference

saijod uani8
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Comparison to other models

Models Blocks Method
1 2 3

Representative Agent . . L .
(5 1a Lucas, 1978) simple NA simple | Finite difference

Heterogeneous Agents

(3 1a Krusell and Smith, 1998) simple v simple | Gu et al.,, 2023
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2. Distribution
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Comparison to other models

Models Blocks Method
1 2 3
(Réelgrfiigtf;;;/)e Agent simple NA simple | Finite difference
Heterogeneous Agents . .
(2 la Krusell and Smith, 1998) simple 4 simple | Gu et al., 2023
I(_:)Izg;:l\::::::re::d Sannikov, 2014) closed-form | low-dim v Gopalakrishna, 2021
3. Equilibrium
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Comparison to other models

Models Blocks Method

1 2 3
'(_\;egrf.iea?tfgt;;l)e Agent simple NA simple | Finite difference
Heterogeneous Agents . .
(2 la Krusell and Smith, 1998) simple 4 simple | Gu et al., 2023
I(_:)Izgs_rl:\.::::::re::d Sannikov, 2014) closed-form low-dim v Gopalakrishna, 2021
HA + Long-lived assets v v v This paper
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Roadmap

Solution algorithm
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Model summary

> Need to solve a system of PDEs + algebraic equations for (&, q).

Euler egns.: 0
10%;
L 1%
2 dy?
. y
Price: q =
D wini

Consistency-1: gqu?

Consistency-2: qo?

0%¢; 5/
o +Z 3 aj,naeri

£,+Za£’ J,,,+a€"u +1 7G

2 6

7 8nj6y daj

1

oq oq %q
——HMjnt 5 Uy+ 5 ) 5—0in0ynt
;anj />N ay y 2§anﬂ7ﬂ 5sm¥yhm
q 2 q
=0y +;maj,nay

oq 0
= —0jn+
; 677_, Jsn

q
ay”

where w; := ¢j/aj is the consumption-wealth ratio of agent /.
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Neural networks

We can parameterize functions (&, ) as neural network objects. Why?
» Automatic differentiation can be used for derivatives, and

> High-dimensional non-linear optimizers have been developed for neural networks

Let's start with the Euler equation of agent i/ and the unknown function &;

é‘l + Z aé-l aé-l + a él

Jy"? + 2 a / JﬂY J s
10% , 1 525,- (91/),—
+§8y2 YTy - 677]0)/0”7 7t Ga Oa;

> This is a high-dimensional PDE.

> In our model, the evolution of price function g also follows a PDE of the type
above (the consistency conditions)
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Neural networks

One way to solve this PDE is to parameterize the unknown function &; as a neural
network object & with parameters ©¢.

The approximated function f,— takes as input a vector of training samples
X" = (y", {n;}")"_, drawn uniformly from the state space X := (y, {ni}1<i</)-
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Neural networks

One way to solve this PDE is to parameterize the unknown function &; as a neural
network object & with parameters ©¢.

The approximated function f, takes as input a vector of training samples
X" = (y", {n;}")"_, drawn uniformly from the state space X := (y, {ni}1<i</)-

Then the Euler equation residual (or PDE residual) can be computed as

fir=(r—p 5: Z &MJW (9{, *Z

ojr
79im9"
67777J

10%; ﬂé, aw,-_
+§(’°y2ay+22077(3 %im Y+6a,- =0

The Euler equation loss is given by + SV | |f(X")].

We can similarly compute the loss on consistency and goods market clearing
conditions.

Gopalakrishna, Gu and Payne
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Parsimonious parameterization

Instead of parameterizing & and g, we parameterize the consumption-wealth ratio w;
as @; with ©,, and draw training sample X"

Yy

> Price g from the equilibrium condition g = S o

» Marginal value of wealth & = v/ (®iniq)

We proceed to follow similar steps as before to compute Euler equation loss where the
residual is computed as

(Wi i(Wi 261 (i
fii = (r = p)&(@) + ] a%;j Ly + & (; Dy + %Z 657(:{)‘71’"‘71’,77 )
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Parsimonious parameterization

Instead of parameterizing & and g, we parameterize the consumption-wealth ratio w;
as @; with ©,, and draw training sample X"

Yy

> Price g from the equilibrium condition g = S o

» Marginal value of wealth & = v/ (®iniq)

We proceed to follow similar steps as before to compute Euler equation loss where the
residual is computed as

(Wi i(Wi 261 (i
fii = (r = p)&(@) + ] a%;j Ly + & (; Dy + %Z 657(:{)‘71’"‘71’,77 )

> The derivatives can still be easily computed using automatic differentiation,
which leads to the same Euler equation loss as before.

> With parsimonious paramterization, we don’t require goods market clearing
condition loss
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Algorithm

Algorithm Pseudo Code

1: Initialize neural network objects {&i}1<i<s with parameters {©., }1<i<-

2: Initialize optimizer.

3: while Loss > tolerance, at iteration t do

4:
5:
6:
7
8:

Sample training points: X" = (y", {Ui}"),,Nzl-

Compute q" = y"/(3; @i(X")n7), ¢ = @i(X")ni'q", and &' = u'(c") for each i
Determine oy, rg — r and then o9, u9, .

Construct loss as 3, + 3. |fi(X")| , where f; is defined in (2).

Update {©.,} using ADAM optimizer.

9: end while
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Approach Q & A

> Q. What about imposing dimension reduction?

» Han, Yang, and E, 2021 and Kahou et al., 2021 suggest feeding the distribution
through a preliminary neural network that reduces the dimension.

> We have solved the model without this approach but agree this could be useful.

> Q. Neural networks are slow to train so how do we calibrate?
> Could add parameters to neural network so we only have to train the model once.
> Let ¢ denote economic parameters needing external calibration to match moments.
> Add ¢ as inputs into the neural network:
V(X:,$) ~ V(Xe, & 0), Xe = {x, e, 8¢
> Train the neural network using sampling from X and ¢.

> Use the equilibrium V to calculate moments for different parameters.
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Roadmap

Solutions to example models
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Representative Agent Model (Lucas (1978))

Suppose there are no financial frictions: (ajs, bi,t, ki) = 0.
In this case, households are identical so there is a “representative agent”.

The model has closed form solution:
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Model solution. MSE: < 10~*

11.5 T T T 0.12 T T T
— — Rep Agent — — Rep Agent
11} 5 Agents | 5 Agents
10 Agents 0.115 + 10 Agents i
20 Agents 20 Agents
0.11 + ]
=
] Tor———e ]
=z
g
0.1F 1
0.095 - 1
7.5 . . . 0.09 . . .
0.9 1 1.1 1.2 0.9 1 1.1 1.2
Yy Y

As-if Complete Market Model, v =5, u = 2%, o = 5%, p = 5%.
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Limited Participation Model (Basak and Cuoco, 1998)

Two types of agents: experts (e) and households (h).
Expert sector can hold stocks and bonds.
Household sector can only hold bonds: Ws(an ¢, bn,t) = an — bne = 0.

State space is (y,n), where 7 is expert’s wealth share.
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Model solution. L2 Loss:

<107°

0.13 T T T T
0.12
© Neural Net
3 011 F N\ — — TFinite Diff
0.1F
009 L L L L
0.2 0.4 0.6 0.8
14 T T
13
12
Neural Net

11+

9 L

— — Finite Diff

0.2

0.4

0.6 0.8

n

road

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

Neural Net |
— — Finite Diff

Neural Net
— — Finite Diff

n

0.6 0.8

2 Agents Limited Participation Model, v = 5, pe = pn = 5%, u = 2%, 0 = 5%.
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Production Economy With ldiosyncratic Risk

Production technology:

ye = zKoL®

Capital accumulation (investment friction ®(¢) = élog(m +1)):

th = (q)(Lt) — 5)tht
Dividend price ratio:

ﬂ Qaytr — Lt K:

q: q:K:

Labor endowment (Poisson switching):
Z,‘ € {ﬁ, Z}

Households wealth process:

daj s = [Weli+ + ai P — i ] dt

Expert's wealth process: the same as before

Gopalakrishna, Gu and Payne
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Model solution. L2 loss: < 10~*

0.4

0.3 1

0.2

0.1

0.0 1
0.00

Gopalakrishna,

0

——.'!h-"—

® Household
® Expert

freq

i

70 A

60 -

50 A

40 1

30 A

20 A

10 A

0.04 0.8

n

0.12 0.16

0.010 0.015 0.020 0.025 0.030 0.035

9q

11 Agents Limited Participation model with Production: v = 1,0 = 1%,
a=03,¢0=10,6 =0.05,\1 = X\2=04,£=03,{=1.7,p. = pr = 5%
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Roadmap

Under the hood
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Automatic differentiation in practice

Approximating J using a neural network

def J(z,t):
J = neural_net(tf.concat([z,t],1),weights,biases)
return J

Constructing regularizer: 1D model

PDE network

def f(z,t):
= J(z,t)

= tf.gradients(J,t) [0]
= tf.gradients (J,z) [0]
zz = tf.gradients(J_z,z) [0]
= J_t + advection * J_z + diffusion * J_zz - linearTerm ‘*_J
return f

N o

J
J_
J_
J_
f
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Automatic differentiation in practice

Approximating J using a neural network

def J(z,t):
J = neural_net(tf.concat([z,t],1),weights,biases)
return J

Constructing regularizer: 1D model

PDE network

def f(z,t):

J(z,t)

= tf.gradients(J,t) [0]

= tf.gradients(J,z) [0]

= tf.gradients(J_z,z) [0]

J _t + advection * J_z + diffusion * J_zz - linearTerm
eturn f

IINNr*II

t
J
J_
J_
J_
f
r

def f(z,a,t):

J = J(z,a,t)
t = tf.gradients(J,t) [0]
z tf.gradients (J,z) [0]
_a = tf.gradients(J,a) [0]
z
a

F0Enetoork

LRI

tf.gradients(J_z,z) [0]
= tf.gradients(J_a,a) [0]
az = tf.gradients(J_a,z) [0]
= J_t + advection_z * J_z + advection_a * J_a + diffusion_z % J_ +
diffusion_a * J_aa + crossTerm * J_az - linearTerm * J

Gopalakrishna, Gu and Payne 31/38



Conclusion

We have used deep learning to solve continuous time DSGE models with:

1. A short-term risk free asset and a set of long-term risky assets,

2. A large collection of price-taking agents who face idiosyncratic shocks/constraints

We believe this will allow the development of heterogeneous agent macro-finance.

Our current project uses this to solve a model of institutional asset pricing.
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Thank You!

Gopalakrishna, Gu and Payne 33 /38



References |

ﬁ Azinovic, Marlon and Jan Zemlitka (2023). “Economics-Inspired Neural Networks with
Stabilizing Homotopies”. In: arXiv preprint arXiv:2303.14802.

ﬁ Basak, Suleyman and Domenico Cuoco (1998). “An equilibrium model with restricted
stock market participation”. In: The Review of Financial Studies 11.2, pp. 309-341.

ﬁ Brunnermeier, Markus K and Yuliy Sannikov (2014). “A macroeconomic model with a
financial sector”. In: American Economic Review 104.2, pp. 379-421.

ﬁ Duarte, Victor (2018). “Machine learning for continuous-time economics”. In: Available
at SSRN 3012602.

Ferndndez-Villaverde, Jests, Samuel Hurtado, and Galo Nuno (2023). “Financial

frictions and the wealth distribution”. In: Econometrica 91.3, pp. 869-901.

ﬁ Gopalakrishna, Goutham (2021). “Aliens and continuous time economies”. In: Swiss
Finance Institute Research Paper 21-34.

ﬁ Gu, Zhouzhou et al. (2023). “Deep Learning Solutions to Master Equations for
Continuous Time Heterogeneous Agent Macroeconomic Models”. In.

ﬁ Han, Jiequn, Yucheng Yang, and Weinan E (2021). “DeepHAM: A Global Solution
Method for Heterogeneous Agent Models with Aggregate Shocks”. In: arXiv preprint
arXiv:2112.14377.

Gopalakrishna, Gu and Payne 34 /38



References |1

ﬁ Huang, Ji (2023). “Breaking the Curse of Dimensionality in Heterogeneous-Agent
Models: A Deep Learning-Based Probabilistic Approach”. In: SSRN Working Paper.

ﬁ Kahou, Mahdi Ebrahimi et al. (2021). Exploiting symmetry in high-dimensional dynamic
programming. Tech. rep. National Bureau of Economic Research.

ﬁ Krusell, Per and Anthony A Smith (1998). “Income and Wealth Heterogeneity in the
Macroeconomy”. In: Journal of Political Economy 106.5, pp. 867-896.

ﬁ Kubler, Felix and Simon Scheidegger (2019). “Self-justified equilibria: Existence and
computation”. In: Available at SSRN 3494876.

ﬁ Lucas, Robert E. (1978). “Asset Prices in an Exchange Economy”. In: Econometrica
46.6, pp. 1429-1445.

Sauzet, Maxime (2021). “Projection methods via neural networks for continuous-time
models”. In: Available at SSRN 3981838.

Gopalakrishna, Gu and Payne 35/ 38



Appendix: FOCs

FOCs are
[c]: 0=d'(c)—0d:.Vi(a)
oV iz
[b1: 0= =2 (r() = r()) + a—( -
PV o
T Pardy Z aa,aa,

Gopalakrishna, Gu and Payne
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Appendix: FOCs

[c]: 0=1u'(c)—&
0

[bi]: 0= =& (r(-) —re(-)) + P (ai — bi)(07)*(")

i 2 26
O SO Sl

+
dy = 631

Rearranging the asset pricing equation and using

0§ &‘f, (95,
i aai Oa; Oy + Z

O¢

we get

i

gi(rirQ) _0-5:0— + 5 ab

Gopalakrishna, Gu and Payne
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Appendix: Grid sampling vs Simulation method

> Our method draws training points from throughout the state space

» Sampling procedure is complementary to simulation based methods (Azinovic et
al (2018), Villaverde et al (2020)), but also works for models with rare events and
financial constraints that bind far away from the steady state

% —— Volatility
B Stationary distribution

0.0 0.2 0.4 0.6 0.8 1.0
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