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This Project

§ We focus on solving macroeconomic models not estimating statistical models.

§ We study continuous time DSGE models with the following features:

1. A short-term risk free asset and a set of long-term risky assets,

2. A large collection of price-taking agents who face idiosyncratic shocks/constraints

§ We use deep learning to obtain a global solution.

§ We are unaware of other global solution techniques for these models:

1. Traditional techniques: are intractable unless the agent distribution can be
approximated by low dimensional moments.

(e.g. Krusell and Smith, 1998, Fernández-Villaverde, Hurtado, and Nuno, 2023, Kubler and

Scheidegger, 2019)

2. Other deep learning techniques: have struggled to solve models with wealth
distribution, long-lived assets and complicated portfolio choice.

(e.g. Duarte, 2018, Gopalakrishna, 2021, Sauzet, 2021, Gu et al., 2023, Fernández-Villaverde,

Hurtado, and Nuno, 2023, Huang, 2023, Azinovic and Žemlička, 2023)
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Three blocks

General equilibrium for this economy can
be characterized by three blocks

1. Optimization block: High but finite
dimensional PDE capturing agents
optimization over consumption,
portfolio holdings taking prices as
given

2. Distribution block: High but finite
dimensional law of motion of agent’s
wealth

3. Equilibrium block: Ensures that price
processes are consistent with
equilibrium

1. Optimization

2. Distribution

3. Equilibrium

given prices

g
iven

p
o
licies

con
sist

ent

This is the first paper that can solve models with all three non-trivial blocks.
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Roadmap

Illustrative model

Comparison to other models

Solution algorithm

Solutions to example models

Under the hood
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General Equilibrium Endowment Asset Pricing Model

§ Time is continuous with infinite horizon.

§ Perishable consumption good created by a Lucas tree that produces output:

dyt “ µy pytqdt ` σy pytqdWt

where Wt is a standard Brownian motion.

§ Populated by price-taking households with flow utility upci,tq.

§ Competitive markets for goods, risk-free bonds in net zero supply (with price rt),
and equity shares in Lucas tree (with price qt). The price process follows

dqt “ µq
t qtdt ` σq

t qtdWt

§ Financial frictions restrict the agents’ choice by Ψpai,t , bi,t , κi q ě 0

§ ai,t is agent wealth, bi,t is agent bond holdings.

§ E.g. borrowing constraint is ai,t ´ κi ě 0.

§ E.g. equity non-participation constraint is ai,t ´ bi,t “ 0.

§ Typically easier to model as penalty ψpai,t , bi,t , κi q “ |Ψpai,t , bi,t , κi q|2.
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Optimization and Equilibrium

Given the belief about price processes r̂ , q̂, agent i solves

max
c,b

"

E0

„
ż 8

0

e´ρt
pupci,tq ` ψpai,t , bi,t , κi qqdt

ȷ*

s.t. dai,t “ bi,t r̂t ´ ci,t `

ˆ

µq
t `

yt
q̂t

˙

pai,t ´ bi,tq ` pai,t ´ bi,tqσ
q
t dWt

(1)

Equilibrium:

1. Individual i ’s consumption decision c it and bond holding bi
t solves problem (1),

given their believed price process pr̂ , q̂q;

2. Equilibrium prices pqt , rtq solves market clearing conditions: (i) goods market
ř

i ci,t “ y , (ii) stock market
ř

i pai,t ´ bi,tq “ qt and (iii) bond market
ř

i bi,t “ 0.

3. Agent beliefs about the price process are consistent with the optimal behaviour of
other agents in the sense that pr̂ , q̂q “ pr , qq.
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Recursive Characterization of Equilibrium

Individual state = ai , Aggregate states = py , tajuj‰i q “ p¨q.

Given belief about evolution of other agents, pµ̂aj p¨q, σ̂aj p¨qq, agent i solves:

ρVi pai ,¨q “ max
ci ,bi

!

upci q ` ψpai , si , κi q `
BVi

Bai
µai pci , bi , ¨q `

BVi

By
µy

`
1

2

B
2Vi

Ba2i
σ2
ai pbi , ¨q `

1

2

B
2Vi

By 2
σ2
y `

B
2Vi

BaiBy
σai pbi , ¨qσy `

ÿ

j‰i

BVi

Baj
µ̂aj p¨q

`
1

2

ÿ

j‰i,j1‰i

B
2Vi

BajBaj1
σ̂aj p¨qσ̂a1

j
p¨q `

ÿ

j‰i

B
2Vi

BajBy
σ̂aj p¨qσy `

ÿ

j‰i

B
2Vi

BaiBaj
σai pbi , ¨qσ̂aj p¨q

FOCs after defining ξi :“
BVi
Bai

, and applying Ito’s lemma to ξi are

ξi “ u1
pci q ξi pr ´ rqq “ σξiσ

q
` pBψi{Bbi q

In equilibrium, beliefs are consistent: pµ̂aj p¨q, σ̂aj p¨qq “ pµaj p¨q, σaj p¨qq
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Imposing Equilibrium

We use aggregate state py , tηiu1ďiďI q, where ηi :“ ai{A is agent i ’s wealth share.

Once equilibrium is imposed, we know ξi is a function of py , tηiu1ďiďI q

. . . so we can write µξi and σξi in terms of derivatives of py , tηiu1ďiďI q.

We group the resulting equilibrium equations into three blocks.
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Block-1

1. Optimization

§ Given prices pr , rq, q, µq, σqq, agent optimization implies:

Consumption: ξi “ u1
pci q

Euler equations: ρξi “ rξi `
ÿ

j

Bξi
Bηj

µj,η `
Bξi
By
µy `

1

2

ÿ

j,j1

B
2ξi

Bηjη1
j

σj,ησj1,η

`
1

2

B
2ξi

By 2
σ2
y `

ÿ

j

B
2ξi

BηjBy
σj,ησy `

Bψi

Bai
, for all i

Asset pricing: ξi pr ´ rqq “

˜

ÿ

j

Bξi
Bηj

σj,η `
Bξi
By
σy

¸

σq `
Bψi

Bbi
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Block-2

2. Distribution

Given the prices pr , rq, q, µq, σqq and pc, ξ, bq, the law of motion of wealth shares is
given as

dηj,t “ µj,η,tdt ` σj,η,tdWt

µj,η,t “
yt
qt

`
bj,t
aj,t

prt ´ rq,tq ´
pu1

q
´1

pξj,tq

ηj,tqt
`

bj,t
aj,t

pσq
t q

2

σj,η,t “

„

1

aj
paj,t ´ bj,tqσ

q
t ´ σq

t

ȷ

“ ´
bj,t
aj,t

σq
t
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Block-3

3. Equilibrium

In equilibrium, the following market clearing conditions must hold:
ÿ

i

bi “ 0
ÿ

i

ηi “ 1
ÿ

i

ci “ y

Clearing conditions pin down the prices but LOM of price, q, is implicit.

We impose consistency conditions on the LOM of the price q to close the model:

qµq
“

ÿ

j

Bq

Bηj
µj,η `

Bq

By
µy `

1

2

ÿ

j,j1

B
2q

Bηjηj1
σj,ησj1,η `

ÿ

j

B
2q

BηjBy
σj,ησy `

1

2

B
2q

By 2
σ2
y

qσq
“

ÿ

j

Bq

Bηj
σj,η `

Bq

By
σy
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Comparison to other models

Models
Blocks

Method
1 2 3

Representative Agent
(à la Lucas, 1978)

simple NA simple Finite difference

Heterogeneous Agents
(à la Krusell and Smith, 1998)

simple ✓ simple Gu et al., 2023

Long-lived assets
(à la Brunnermeier and Sannikov, 2014)

closed-form low-dim ✓ Gopalakrishna, 2021

HA + Long-lived assets ✓ ✓ ✓ This paper

1. Optimization

2. Distribution

3. Equilibrium

given prices

g
iven

p
o
licies

con
sist

ent
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(à la Lucas, 1978)

simple NA simple Finite difference

Heterogeneous Agents
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Model summary

§ Need to solve a system of PDEs + algebraic equations for pξi , qq.

Euler eqns.: 0 “ pr ´ ρqξi `
ÿ

j

Bξi
Bηj

µj,η `
Bξi
By
µy `

1

2

ÿ

j,j1

B
2ξi

Bηjη1
j

σj,ησj1,η

`
1

2

B
2ξi

By 2
σ2
y `

ÿ

j

B
2ξi

BηjBy
σj,ησy `

Bψi

Bai

Price: q “
y

ř

i ωiηi

Consistency-1: qµq
“

ÿ

j

Bq

Bηj
µj,η `

Bq

By
µy `

1

2

ÿ

j,j1

B
2q

Bηjηj1
σj,ησj1,η`

`
1

2

B
2q

By 2
σ2
y `

ÿ

j

B
2q

BηjBy
σj,ησy

Consistency-2: qσq
“

ÿ

j

Bq

Bηj
σj,η `

Bq

By
σy

where ωi :“ ci{ai is the consumption-wealth ratio of agent i .
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Neural networks

We can parameterize functions pξi , qq as neural network objects. Why?

§ Automatic differentiation can be used for derivatives, and

§ High-dimensional non-linear optimizers have been developed for neural networks

Let’s start with the Euler equation of agent i and the unknown function ξi

0 “ pr ´ ρqξi `
ÿ

j

Bξi
Bηj

µj,η `
Bξi
By
µy `

1

2

ÿ

j,j1

B
2ξi

Bηjη1
j

σj,ησj1,η

`
1

2

B
2ξi

By 2
σ2
y `

1

2

ÿ

j

B
2ξi

BηjBy
σj,ησy `

Bψi

Bai

§ This is a high-dimensional PDE.

§ In our model, the evolution of price function q also follows a PDE of the type
above (the consistency conditions)
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Neural networks

One way to solve this PDE is to parameterize the unknown function ξi as a neural
network object ξ̂i with parameters Θξ.

The approximated function ξ̂i takes as input a vector of training samples
X n

“ pyn, tηiu
n
q
N
n“1 drawn uniformly from the state space X :“ py , tηiu1ďiďI q.

Then the Euler equation residual (or PDE residual) can be computed as

fi : “ pr ´ ρqξ̂i `
ÿ

j

Bξ̂i
Bηj

µj,η `
Bξ̂i
By
µy `

1

2

ÿ

j,j1

B
2ξ̂i

Bηjη1
j

σj,ησj1,η

`
1

2

B
2ξ̂i

By 2
σ2
y `

1

2

ÿ

j

B
2ξ̂i

BηjBy
σj,ησy `

Bψi

Bai
“ 0

The Euler equation loss is given by 1
N

řN
i“1 |fi pX n

q|.

We can similarly compute the loss on consistency and goods market clearing
conditions.
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Parsimonious parameterization

Instead of parameterizing ξi and q, we parameterize the consumption-wealth ratio ωi

as ω̂i with Θω and draw training sample X n

§ Price q from the equilibrium condition q “
y

ř

i ω̂iηi

§ Marginal value of wealth ξi “ u1
pω̂iηiqq

We proceed to follow similar steps as before to compute Euler equation loss where the
residual is computed as

fi : “ pr ´ ρqξi pω̂i q `
ÿ

j

Bξi pω̂i q

Bηj
µj,η `

Bξi pω̂i q

By
µy `

1

2

ÿ

j,j1

B
2ξi pω̂i q

Bηjη1
j

σj,ησj1,η (2)

`
1

2

B
2ξi pω̂i q

By 2
σ2
y `

ÿ

j

B
2ξi pω̂i q

BηjBy
σj,ησy `

Bψi

Bai
“ 0

§ The derivatives can still be easily computed using automatic differentiation,
which leads to the same Euler equation loss as before.

§ With parsimonious paramterization, we don’t require goods market clearing
condition loss
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Algorithm

Algorithm Pseudo Code

1: Initialize neural network objects tω̂iu1ďiďI with parameters tΘωi u1ďiďI .

2: Initialize optimizer.

3: while Loss ą tolerance, at iteration t do

4: Sample training points: X n
“ pyn, tηiu

n
q
N
n“1.

5: Compute qn
“ yn

{p
ř

i ω̂i pX n
qηni q, cni “ ω̂i pX n

qηni q
n, and ξni “ u1

pcni q for each i

6: Determine σηηη, rq ´ r and then σq, µq, µηηη.

7: Construct loss as
ř

i
1
N

ř

n |fi pX n
q| , where fi is defined in (2).

8: Update tΘωi u using ADAM optimizer.

9: end while
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Approach Q & A

§ Q. What about imposing dimension reduction?

§ Han, Yang, and E, 2021 and Kahou et al., 2021 suggest feeding the distribution
through a preliminary neural network that reduces the dimension.

§ We have solved the model without this approach but agree this could be useful.

§ Q. Neural networks are slow to train so how do we calibrate?

§ Could add parameters to neural network so we only have to train the model once.

§ Let ζ denote economic parameters needing external calibration to match moments.

§ Add ζ as inputs into the neural network:

V pX̂t , ζq « V̂ pX̂t , ζ; θq, X̂t “ txt , zt , ĝtu

§ Train the neural network using sampling from X̂ and ζ.

§ Use the equilibrium V̂ to calculate moments for different parameters.
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Representative Agent Model (Lucas (1978))

Suppose there are no financial frictions: ψpai,t , bi,t , κi q “ 0.

In this case, households are identical so there is a “representative agent”.

The model has closed form solution:

qpyq “
y

ρ` pγ ´ 1qµ´ 1
2
γpγ ´ 1qσ2

ωpyq “

„

ρ` pγ ´ 1qµ´
1

2
γpγ ´ 1qσ2

ȷ
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Model solution. MSE: ă 10´4

0.9 1 1.1 1.2

y

7.5

8

8.5

9

9.5

10

10.5

11

11.5

q(
y
)

Rep Agent

5 Agents

10 Agents

20 Agents

0.9 1 1.1 1.2

y

0.09

0.095

0.1

0.105

0.11

0.115

0.12

w
1
(f
2
g;

y
)

Rep Agent

5 Agents

10 Agents

20 Agents

As-if Complete Market Model, γ “ 5, µ “ 2%, σ “ 5%, ρ “ 5%.
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Limited Participation Model (Basak and Cuoco, 1998)

Two types of agents: experts (e) and households (h).

Expert sector can hold stocks and bonds.

Household sector can only hold bonds: Ψhpah,t , bh,tq “ ah,t ´ bh,t “ 0.

State space is py , ηq, where η is expert’s wealth share.
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Model solution. L2 Loss: ă 10´5

0.2 0.4 0.6 0.8

2

0.09

0.1

0.11

0.12

0.13

w
e Neural Net

Finite Di,

0.2 0.4 0.6 0.8

2

0.06

0.07

0.08

0.09

0.1

w
h Neural Net

Finite Di,

0.2 0.4 0.6 0.8

2

9

10

11

12

13

14

q

Neural Net

Finite Di,

0.2 0.4 0.6 0.8

2

0.02

0.03

0.04

0.05

<
q Neural Net

Finite Di,

2 Agents Limited Participation Model, γ “ 5, ρe “ ρh “ 5%, µ “ 2%, σ “ 5%.
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Production Economy With Idiosyncratic Risk

Production technology:

yt “ ztK
α
t L1´α

t

Capital accumulation (investment friction Φpιq “ 1
ϕ
logpϕι` 1q):

dKt “ pΦpιtq ´ δqKtdt

Dividend price ratio:

dt
qt

“
αyt ´ ιtKt

qtKt

Labor endowment (Poisson switching):

ℓi P tℓ, ℓu

Households wealth process:

dai,t “ rŵtℓi,t ` ai,t r̂t ´ ci,ts dt

Expert’s wealth process: the same as before

Gopalakrishna, Gu and Payne 28 / 38



Model solution. L2 loss: ă 10´4

0.00 0.04 0.08 0.12 0.16
0.0

0.1

0.2

0.3

0.4
Household
Expert
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q
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fre
q

11 Agents Limited Participation model with Production: γ “ 1, σ “ 1%,
α “ 0.3, ϕ “ 10, δ “ 0.05, λ1 “ λ2 “ 0.4, ℓ “ 0.3, ℓ “ 1.7, ρe “ ρh “ 5%
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Automatic differentiation in practice

Approximating J using a neural network

def J(z,t):

J = neural_net(tf.concat ([z,t],1),weights ,biases)

return J

Constructing regularizer: 1D model

def f(z,t):

J = J(z,t)

J_t = tf.gradients(J,t)[0]

J_z = tf.gradients(J,z)[0]

J_zz = tf.gradients(J_z ,z)[0]

f = J_t + advection * J_z + diffusion * J_zz - linearTerm * J

return f

def f(z,a,t):

J = J(z,a,t)

J_t = tf.gradients(J,t)[0]

J_z = tf.gradients(J,z)[0]

J_a = tf.gradients(J,a)[0]

J_zz = tf.gradients(J_z ,z)[0]

J_aa = tf.gradients(J_a ,a)[0]

J_az = tf.gradients(J_a ,z)[0]

f = J_t + advection_z * J_z + advection_a * J_a + diffusion_z * J_zz +

diffusion_a * J_aa + crossTerm * J_az - linearTerm * J

return f
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Conclusion

We have used deep learning to solve continuous time DSGE models with:

1. A short-term risk free asset and a set of long-term risky assets,

2. A large collection of price-taking agents who face idiosyncratic shocks/constraints

We believe this will allow the development of heterogeneous agent macro-finance.

Our current project uses this to solve a model of institutional asset pricing.
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Thank You!
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Appendix: FOCs

FOCs are

rci s : 0 “ u1
pci q ´ BaVi pai q

rbi s : 0 “ ´
BVi

Bai
prp¨q ´ rqp¨qq `

B
2Vi

Ba2i
pai ´ bi qpσq

q
2
p¨q

`
B
2Vi

BaiBy
σq

p¨qσy p¨q `
ÿ

j‰i

B
2Vi

BaiBaj
σq

p¨qσ̂aj p¨q `
Bψ

Bbi

(3)

Back
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rci s : 0 “ u1
pci q ´ ξi

rbi s : 0 “ ´ ξi prp¨q ´ rqp¨qq `
Bξi
Bai

pai ´ bi qpσq
q
2
p¨q

`
B
2ξi

By 2
σy p¨q

2
`

Bξi
By
σq

p¨qσy p¨q `
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Baj
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(4)

Rearranging the asset pricing equation and using

σξi “
Bξi
Bai

σai `
Bξi
By
σy `

ÿ

j‰i

Bξi
Baj

σaj

we get

ξi pr ´ rqq “ σξiσ
q

`
Bψi

Bbi

Back
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Appendix: Grid sampling vs Simulation method

§ Our method draws training points from throughout the state space
§ Sampling procedure is complementary to simulation based methods (Azinovic et

al (2018), Villaverde et al (2020)), but also works for models with rare events and
financial constraints that bind far away from the steady state

Back

Gopalakrishna, Gu and Payne 38 / 38


	Illustrative model
	Comparison to other models
	Solution algorithm
	Solutions to example models
	Under the hood
	References
	Appendix
	Appendix


